446,370 research outputs found

    Climate Responsive Design and the Milam Residence

    Get PDF
    Energy conservation and efficiency is an essential area of focus in contemporary building design. The perception that the designers of buildings during the Modernist period of architecture ignored these principles is a false one. The present study, an examination of Paul Rudolph’s Milam Residence, a masterpiece of American residential architecture, is part of a larger project endeavoring to create a knowledge base of the environmental performance of iconic modernist homes. A critical examination of the Milam House allows insight into specific design characteristics that impact energy efficiency and conservation. Located in Ponte Vedra Beach, Florida, the Milam Residence was constructed in 1962. It was the last of a series of Florida residences designed by Rudolph, Chairman of the Department of Architecture at Yale University (1958–1965). The structure’s form is strongly related to its location on a subtropical beachfront. This paper presents a detailed analysis of the building’s solar responsiveness. Specifically, we examine design strategies such as orientation and sunscreening and their effect on daylighting, shading, and heat gain. The analysis is based on parametric energy modeling studies using Autodesk’s Ecotect, an environmental analysis tool that allows simulation of building performance. While the initial target of the program was early design, the program allows the input of complex geometries and detailed programming of zones, materials, schedules, etc. The program\u27s excellent analyses of desired parameters are augmented by visualizations that make it especially valuable in communicating results. Our findings suggest that the building, as built and situated on the site, does take advantage of daylighting and solar shading and does so in both expected and unexpected ways

    Evaluation Of The Stiffness And Strength Parameters Of Hardening Soil Model For The Simulation Of The Twin Tunnels Interaction In Kenny Hill Formation Residual Soil

    Get PDF
    Numerical simulation for geotechnical problem often involved simplifications and assumptions as it is nearly impossible to simulate all features involved in the ground environment. For large scale construction like Klang Valley Mass Rapid Transit (KVMRT) twin tunnels construction under urban environment, realistic geotechnical simulation is essential. In this study, a parameters determination approach is developed to determine stiffness and strength parameters for Hardening Soil (HS) models based on evaluation of in-situ and laboratory soil testing data for the simulation of twin tunnels interaction in Kenny Hill Formation residual soil. Subsurface characterization conducted to develop three-dimensional (3D) ground models, tunnel filtered models and ground sections for four zones divided from study area based on similarity in lithology and Standard Penentration Test Blow Count (SPT-N) Value distribution. Three critical ground sections were selected based on input of tunnel filtered models and ground sections, twin tunnels configuration associated in respective sections and availability of tunnelling induced ground movement data. The soil profiles and corresponding soil parameters were determined for selected ground sections to develop conceptual model for finite element method (FEM) simulation of tunnelling induced deformation. The soil parameters for Kenny Hill residual soil were evaluated by comparing numerical simulated and in-situ monitored Pressuremeter test (PMT) stress strain curves. The HS model is calibrated by optimization of stiffness and strength parameters to match the in-situ stress-strain curves. Sensitivity analysis of HS parameters influences towards soil behaviour showed that oedometer stiffness has more impact in controlling plastic deformation while unload-reload stiffness has significant effect on the elastic region of soil behaviour. The effectiveness of soil model calibration is determined by back analyses of twin tunnels excavation and verification. The twin tunnels excavation simulation using calibrated HS parameters estimated surface settlement that showed good agreement with construction-monitored ground movements. Meanwhile, Mohr Coulomb (MC) parameters predicted ground movement with surface heave, against the direction of monitoring data. Parametric analysis conducted to determine the influence of tunnels configuration and construction sequence towards twin tunnels interaction in Kenny hill formation residual soil. This study showed an integrated approach for constitutive soil model parameters determination with incorporation of subsurface modelling, constitutive model calibration and verification. The calibrated HS parameters for Kenny Hill formation residual soil contributed as a reference for future construction with similar geological characteristic. The proposed parameters determination method provides a reliable and effective methodology in parameter selection in geotechnical simulation instead of direct correlation from empirical data

    Liquids-Rich Shale Evaluation: Modelling and Optimization of Hydraulically Fractured Liquids-Rich Shale Wells

    Get PDF
    Imperial Users onl

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Carbon dioxide Storage Potential in the North Sea

    Get PDF
    Imperial Users onl

    ESTABLISHMENT OF CYBER-PHYSICAL CORRELATION AND VERIFICATION BASED ON ATTACK SCENARIOS IN POWER SUBSTATIONS

    Get PDF
    Insurance businesses for the cyberworld are an evolving opportunity. However, a quantitative model in today\u27s security technologies may not be established. Besides, a generalized methodology to assess the systematic risks remains underdeveloped. There has been a technical challenge to capture intrusion risks of the cyber-physical system, including estimating the impact of the potential cascaded events initiated by the hacker\u27s malicious actions. This dissertation attempts to integrate both modeling aspects: 1) steady-state probabilities for the Internet protocol-based substation switching attack events based on hypothetical cyberattacks, 2) potential electricity losses. The phenomenon of sequential attacks can be characterized using a time-domain simulation that exhibits dynamic cascaded events. Such substation attack simulation studies can establish an actuarial framework for grid operation. The novelty is three-fold. First, the development to extend features of steady-state probabilities is established based on 1) modified password models, 2) new models on digital relays with two-step authentications, and 3) honeypot models. A generalized stochastic Petri net is leveraged to formulate the detailed statuses and transitions of components embedded in a Cyber-net. Then, extensive modeling of steady-state probabilities is qualitatively performed. Methodologies on how transition probabilities and rates are extracted from network components and actuarial applications are summarized and discussed. Second, dynamic models requisite for switching attacks against multiple substations or digital relays deployed in substations are formulated. Imperative protection and control models to represent substation attacks are clarified with realistic model parameters. Specifically, wide-area protections, i.e., special protection systems (SPSs), are elaborated, asserting that event-driven SPSs may be skipped for this type of case study. Third, the substation attack replay using a proven commercially available time-domain simulation tool is validated in IEEE system models to study attack combinations\u27 critical paths. As the time-domain simulation requires a higher computational cost than power flow-based steady-state simulation, a balance of both methods is established without missing the critical dynamic behavior. The direct impact of substation attacks, i.e., electricity losses, is compared between steady-state and dynamic analyses. Steady-state analysis results are prone to be pessimistic for a smaller number of compromised substations. Finally, simulation findings based on the risk-based metrics and technical implementation are extensively discussed with future work

    Impact of anisotropy and fracture density on the approximation of the effective permeability of a fractured rock mass using 2D models

    Get PDF
    Imperial Users onl
    corecore