397 research outputs found

    A mixed-signal ASIC for time and charge measurements with GEM detectors

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and performance of a GNSS single-frequency multi-constellation vector tracking architecture for urban environments

    Get PDF
    In the last decade, Global Navigation Satellites Systems (GNSS) have gained a significant position in the development of urban navigation applications and associated services. The urban environment presents several challenges to GNSS signal reception, such as multipath and GNSS Line-of-Sight (LOS) blockage, which are translated in the positioning domain in a decreased navigation solution accuracy up to the lack of an available position. For this matter, Vector Tracking (VT) constitutes a promising approach able to cope with the urban environment-induced effects including multipath, NLOS reception and signal outages. This thesis is particularly focused on the proposal and design of a dual constellation GPS + Galileo single frequency L1/E1 Vector Delay Frequency Lock Loop (VDFLL) architecture for the automotive usage in urban environment. From the navigation point of view, VDFLL represents a concrete application of information fusion, since all the satellite tracking channels are jointly tracked and controlled by the common navigation Extended Kalman filter (EKF). The choice of the dual-constellation single frequency vector tracking architecture ensures an increased number of observations and at the same time allowing the conservation of the low-cost feasibility criteria of the mobile user’s receiver. Moreover, the use of single frequency L1 band signals implies the necessity of taking into account the ionospheric error effect. In fact, even after the application of the ionosphere error correction models, a resultant ionospheric residual error still remains in the received observations. The originality of this work relies on the implementation of a dual-constellation VDFLL architecture, capable of estimating the ionosphere residual error present in the received observations. This dissertation investigates the VDFLL superiority w.r.t the scalar tracking receiver in terms of positioning performance and tracking robustness for a real car trajectory in urban area in the presence of multipath and ionosphere residual error

    Next Generation Multi-System Multi-Frequency GNSS Receivers

    Get PDF
    Nowadays we have satellites available from GPS, GLONASS, Galileo and BeiDou systems. This will lead to an increased demand for solutions, which utilize multiple Global Navigation Satellite Systems (GNSS). Such solutions can have great market potential since they can be applied in numerous applications involving GNSS navigation, e.g. smartphones and car navigators. The aim of this thesis is to present the issues that arise in modern high sensitivity receivers, and to present research results of navigation algorithms suitable for the next generation multi-system multi-frequency GNSS receivers.With the availability of multiple satellites systems, the user benefits mostly from the improved visibility of the satellites. The increased availability of satellites naturally increases the computational requirements in the receiver. The main focus of the presented algorithms is on critical factors like provided accuracy versus low cost, low power consumption. In addition, the presented algorithms have been collected into a comprehensive navigation algorithm library where they have additional value for educational purposes.The presented navigation algorithms focus mainly in the GPS and Galileo systems, with the combination of L1/E1 & L5/E5a frequencies. A novel GPS + Galileo dual frequency receiver was developed by the team over the years. Where applicable, the thesis collects important facts from modern GLONASS and BeiDou systems.The first part of the thesis introduces all available open service signals from the GNSS systems, revealing how vast the scope of multi-system, multi-frequency receiver design is. The chapter continues with introduction to the basics of GNSS systems, and description of the problems that the receiver designer must overcome. The chapter further continues by describing a basic receiver architecture suitable for multi-system multi-frequency reception. The introductory part also has a short section is dedicated for underlining the importance of testing mechanisms for a novel receiver under development.The second part of the thesis concentrates on the baseband processing of the GNSS receiver. Topics cover acquisition and tracking, with multi-system multi-frequency implementation Abstract details kept in mind. The chapter also contains sections for issues that must be handled in high sensitivity receivers, e.g. cross-correlation and cycle slip detection. The second part of the thesis is concluded with a description how Assisted-GNSS capability would alter many of the design considerations.The third part of the thesis describes algorithms related to the data bit decoding issues. All the different satellite systems have their own low-level navigation data structure with additional layers of error detection / correction mechanisms. This part of the thesis provides the algorithms for successful decoding of the data.The final part of the thesis describes the basic navigation solution algorithms suitable for the mass-market receivers. In this part, the method of combining the measurements from the different satellite systems is discussed. Additionally, all the issues of processing multisystem signals are collected here, and in the end the Position, Velocity, and Time (PVT) solution is obtained

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured −113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the Σ-Δ noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the Σ-Δ modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches

    Get PDF
    Since many years, civil aviation has identified GNSS as an attractive mean to provide navigation services for every phase of flight due to its wide coverage area. However, to do so, GNSS has to meet relevant requirements in terms of accuracy, integrity, availability and continuity. To achieve this performance, augmentation systems have been developed to correct the GNSS signals and to monitor the quality of the received Signal-In-Space (SIS). We can distinguish GBAS (Ground Based Augmentation Systems), ABAS (Airborne Based Augmentation Systems) SBAS (Satellite Based Augmentation Systems). In this context, the aim of this study is to characterize and evaluate the GNSS position error of various positioning solutions which may fulfil applicable civil aviation requirements for GNSS approaches. In particular, this study focuses on two particular solutions which are: • Combined GPS/GALILEO receivers augmented by RAIM where RAIM is a type of ABAS augmentation. This solution is a candidate to provide a mean to conduct approaches with vertical guidance (APV I, APV II and LPV 200). • GPS L1 C/A receivers augmented by GBAS. This solution should allow to conduct precision approaches down to CAT II/III, thus providing an alternative to classical radio navigation solutions such as ILS. This study deals with the characterization of the statistics of the position error at the output of these GNSS receivers. It is organised as following. First a review of civil aviation requirements is presented. Then, the different GNSS signals structure and the associated signal processing selected are described. We only considered GPS and GALILEO constellations and concentrated on signals suitable for civil aviation receivers. The next section details the GNSS measurement models used to model the measurements made by civil aviation receivers using the previous GNSS signals. The following chapter presents the GPS/GALILEO and RAIM combination model developed as well as our conclusions on the statistics of the resulting position error. The last part depicts the GBAS NSE (Navigation System Error) model proposed in this report as well as the rationales for this model

    Utilisation des signaux GNSS et de leurs augmentations pour l'Aviation Civile lors d'approches avec guidage vertical et d'approches de précision

    Get PDF
    Since many years, civil aviation has identified GNSS as an attractive mean to provide navigation services for every phase of flight due to its wide coverage area. However, to do so, GNSS has to meet relevant requirements in terms of accuracy, integrity, availability and continuity. To achieve this performance, augmentation systems have been developed to correct the GNSS signals and to monitor the quality of the received Signal-In-Space (SIS). We can distinguish GBAS (Ground Based Augmentation Systems), ABAS (Airborne Based Augmentation Systems) SBAS (Satellite Based Augmentation Systems). In this context, the aim of this study is to characterize and evaluate the GNSS position error of various positioning solutions which may fulfil applicable civil aviation requirements for GNSS approaches. In particular, this study focuses on two particular solutions which are: • Combined GPS/GALILEO receivers augmented by RAIM where RAIM is a type of ABAS augmentation. This solution is a candidate to provide a mean to conduct approaches with vertical guidance (APV I, APV II and LPV 200). • GPS L1 C/A receivers augmented by GBAS. This solution should allow to conduct precision approaches down to CAT II/III, thus providing an alternative to classical radio navigation solutions such as ILS. This study deals with the characterization of the statistics of the position error at the output of these GNSS receivers. It is organised as following. First a review of civil aviation requirements is presented. Then, the different GNSS signals structure and the associated signal processing selected are described. We only considered GPS and GALILEO constellations and concentrated on signals suitable for civil aviation receivers. The next section details the GNSS measurement models used to model the measurements made by civil aviation receivers using the previous GNSS signals. The following chapter presents the GPS/GALILEO and RAIM combination model developed as well as our conclusions on the statistics of the resulting position error. The last part depicts the GBAS NSE (Navigation System Error) model proposed in this report as well as the rationales for this model.La navigation par satellite, Global Navigation Satellite System, a été reconnue comme une solution prometteuse afin de fournir des services de navigation aux utilisateurs de l'Aviation Civile. Ces dernières années, le GNSS est devenu l'un des moyens de navigation de référence, son principal avantage étant sa couverture mondiale. Cette tendance globale est visible à bord des avions civils puisqu'une majorité d'entre eux est désormais équipée de récepteurs GNSS. Cependant, les exigences de l'Aviation Civile sont suffisamment rigoureuses et contraignantes en termes de précision de continuité, de disponibilité et d'intégrité pour que les récepteurs GPS seuls ne puissent être utilisés comme unique moyen de navigation. Cette réalité a mené à la définition de plusieurs architectures visant à augmenter les constellations GNSS. Nous pouvons distinguer les SBAS (Satellite Based Augmentation Systems), les GBAS (Ground Based Augmentation Systems), et les ABAS (Aircraft Based Augmentation Systems). Cette thèse étudie le comportement de l'erreur de position en sortie d'architectures de récepteur qui ont été identifiées comme étant très prometteuses pour les applications liées à l'Aviation civile

    Analog-to-digital interface design in wireless receivers

    Get PDF
    As one of the major building blocks in a wireless receiver, the Analog-to-Digital Interface (ADI) provides link and transition between the analog Radio Frequency (RF) frontend and the baseband Digital Signal Processing (DSP) module. The rapid development of the radio technologies raises new design challenges for the receiver ADI implementation. Requirements, such as power consumption optimization, multi-standard compatibility, fast settling capability and wide signal bandwidth capacity, are often encountered in a low voltage ADI design environment. Previous research offers ADI design schemes that emphasize individual merit. A systematic ADI design methodology is, however, not suffciently studied. In this work, the ADI design for two receiver systems are employed as research vehicles to provide solutions for different ADI design issues. A zero-crossing demodulator ADI is designed in the 0.35µm CMOS technology for the Bluetooth receiver to provide fast settling. Architectural level modification improves the process variation and the Local Oscillation (LO) frequency offset immunity of the demodulator. A 16.2dB Signal-to-Noise Ratio (SNR) at 0.1% Bit Error Rate (BER) is achieved with less than 9mW power dissipation in the lab measurement. For ADI in the 802.11b/Bluetooth dual-mode receiver, a configurable time-interleaved pipeline Analog-to-Digital-Converter (ADC) structure is adopted to provide the required multi-standard compatibility. An online digital calibration scheme is also proposed to compensate process variation and mismatching. The prototype chip is fabricated in the 0.25µm BiCMOS technology. Experimentally, an SNR of 60dB and 64dB are obtained under the 802.11b and Bluetooth receiving modes, respectively. The power consumption of the ADI is 20.2mW under the 802.11b receiving mode and 14.8mW under the Bluetooth mode. In this dissertation, each step of the receiver ADI design procedure, from system level optimization to the transistor level implementation and lab measurement, is illustrated in detail. The observations are carefully studied to provide insight on receiver ADI design issues. The ADI design for the Ultra-Wide Band (UWB) receiver is also studied at system level. Potential ADI structure is proposed to satisfy the wide signal bandwidth and high speed requirement for future applications

    Modes dégradés résultant de l'utilisation multi constellation du GNSS

    Get PDF
    Actuellement, on constate dans le domaine de la navigation, un besoin croissant de localisation par satellites. Apres une course a l'amelioration de la precision (maintenant proche de quelques centimetres grace a des techniques de lever d'ambiguite sur des mesures de phase), la releve du nouveau defi de l'amelioration de l'integrite du GNSS (GPS, Galileo) est a present engagee. L'integrite represente le degre de confiance que l'on peut placer dans l'exactitude des informations fournies par le systeme, ainsi que la capacite a avertir l'utilisateur d'un dysfonctionnement du GNSS dans un delai raisonnable. Le concept d'integrite du GNSS multi-constellation necessite une coordination au niveau de l'architecture des futurs recepteurs combines (GPS-Galileo). Le fonctionnement d'un tel recepteur dans le cas de passage du systeme multi-constellation en mode degrade est un probleme tres important pour l'integrite de navigation. Cette these se focalise sur les problemes lies a la navigation aeronautique multiconstellation et multi-systeme GNSS. En particulier, les conditions de fourniture de solution de navigation integre sont evaluees durant la phase d'approche APV I (avec guidage vertical). En disposant du GPS existant, du systeme Galileo et d'un systeme complementaire geostationnaire (SBAS), dont les satellites emettent sur des frequences aeronautiques en bande ARNS, la question fondamentale est comment tirer tous les benefices d'un tel systeme multi-constellation pour un recepteur embarque a bord d'un avion civil. En particulier, la question du maintien du niveau de performance durant cette phase de vol APV, en termes de precision, continuite, integrite et disponibilite, lorsque l'une des composantes du systeme est degradee ou perdu, doit etre resolue. L'objectif de ce travail de these est donc d'etudier la capacite d'un recepteur combine avionique d'effectuer la tache de reconfiguration de l'algorithme de traitement apres l'apparition de pannes ou d'interferences dans une partie du systeme GNSS multiconstellation et d'emettre un signal d'alarme dans le cas ou les performances de la partie du systeme non contaminee ne sont pas suffisantes pour continuer l'operation en cours en respectant les exigences de l'aviation civile. Egalement, l'objectif de ce travail est d'etudier les methodes associees a l'execution de cette reconfiguration pour garantir l'utilisation de la partie du systeme GNSS multi-constellation non contaminee dans les meilleures conditions. Cette etude a donc un interet pour les constructeurs des futurs recepteurs avioniques multiconstellation. ABSTRACT : The International Civil Aviation Organization (ICAO) has defined the concept of Global Navigation Satellite System (GNSS), which corresponds to the set of systems allowing to perform satellite-based navigation while fulfilling ICAO requirements. The US Global Positioning Sysem (GPS) is a satellite-based navigation system which constitutes one of the components of the GNSS. Currently, this system broadcasts a civil signal, called L1 C/A, within an Aeronautical Radio Navigation Services (ARNS) band. The GPS is being modernized and will broadcast two new civil signals: L2C (not in an ARNS band) and L5 in another ARNS band. Galileo is the European counterpart of GPS. It will broadcast three signals in an ARNS band: Galileo E1 OS (Open Service) will be transmitted in the GPS L1 frequency band and Galileo E5a and E5b will be broadcasted in the same 960-1215 MHz ARNS band than that of GPS L5. GPS L5 and Galileo E1, E5a, E5b components are expected to provide operational benefits for civil aviation use. However, civil aviation requirements are very stringent and up to now, the bare systems alone cannot be used as a means of navigation. For instance, the GPS standalone does not implement sufficient integrity monitoring. Therefore, in order to ensure the levels of performance required by civil aviation in terms of accuracy, integrity, continuity of service and availability, ICAO standards define different systems/algorithms to augment the basic constellations. GPS, Galileo and the augmentation systems could be combined to comply with the ICAO requirements and complete the lack of GPS or Galileo standalone performance. In order to take benefits of new GNSS signals, and to provide the service level required by the ICAO, the architecture of future combined GNSS receivers must be standardized. The European Organization for Civil Aviation Equipment (EUROCAE) Working Group 62, which is in charge of Galileo standardization for civil aviation in Europe, proposes new combined receivers architectures, in coordination with the Radio Technical Commission for Aeronautics (RTCA). The main objective of this thesis is to contribute to the efforts made by the WG 62 by providing inputs necessary to build future receivers architecture to take benefits of GPS, Galileo and augmentation systems. In this report, we propose some key elements of the combined receivers' architecture to comply with approach phases of flight requirements. In case of perturbation preventing one of the needed GNSS components to meet a phase of flight required performance, it is necessary to be able to switch to another available component in order to try to maintain if possible the level of performance in terms of continuity, integrity, availability and accuracy. That is why future combined receivers must be capable of detecting the impact of perturbations that may lead to the loss of one GNSS component, in order to be able to initiate a switch. These perturbations are mainly atmospheric disturbances, interferences and multipath. In this thesis we focus on the particular cases of interferences and ionosphere perturbations. The interferences are among the most feared events in civil aviation use of GNSS. Detection, estimation and removal of the effect of interference on GNSS signals remain open issues and may affect pseudorange measurements accuracy, as well as integrity, continuity and availability of these measurements. In literature, many different interference detection algorithms have been proposed, at the receiver antenna level, at the front-end level. Detection within tracking loops is not widely studied to our knowledge. That is why, in this thesis, we address the problem of interference detection at the correlators outputs. The particular case of CW interferences detection on the GPS L1 C/A and Galileo E1 OS signals processing is proposed. Nominal dual frequency measurements provide a good estimation of ionospheric delay. In addition, the combination of GPS or GALILEO navigation signals processing at the receiver level is expected to provide important improvements for civil aviation. It could, potentially with augmentations, provide better accuracy and availability of ionospheric correction measurements. Indeed, GPS users will be able to combine GPS L1 and L5 frequencies, and future GALILEO E1 and E5 signals will bring their contribution. However, if affected by a Radio Frequency Interference, a receiver can lose one or more frequencies leading to the use of only one frequency to estimate the ionospheric code delay. Therefore, it is felt by the authors as an important task to investigate techniques aimed at sustaining multi-frequency performance when a multi constellation receiver installed in an aircraft is suddenly affected by radiofrequency interference, during critical phases of flight. This problem is identified for instance in [NATS, 2003]. Consequently, in this thesis, we investigate techniques to maintain dual frequency performances when a frequency is lost (L1 C/A or E1 OS for instance) after an interference occurrence
    corecore