11,826 research outputs found

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Novel and Diverse Recommendations by Leveraging Linear Models with User and Item Embeddings

    Get PDF
    [Abstract] Nowadays, item recommendation is an increasing concern for many companies. Users tend to be more reactive than proactive for solving information needs. Recommendation accuracy became the most studied aspect of the quality of the suggestions. However, novel and diverse suggestions also contribute to user satisfaction. Unfortunately, it is common to harm those two aspects when optimizing recommendation accuracy. In this paper, we present EER, a linear model for the top-N recommendation task, which takes advantage of user and item embeddings for improving novelty and diversity without harming accuracy.This work was supported by project RTI2018-093336-B-C22 (MCIU & ERDF), project GPC ED431B 2019/03 (Xunta de Galicia & ERDF) and accreditation ED431G 2019/01 (Xunta de Galicia & ERDF). The first author also acknowledges the support of grant FPU17/03210 (MCIU)Xunta de Galicia; ED431B 2019/03Xunta de Galicia; ED431G 2019/0

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Recommender systems fairness evaluation via generalized cross entropy

    Full text link
    Fairness in recommender systems has been considered with respect to sensitive attributes of users (e.g., gender, race) or items (e.g., revenue in a multistakeholder setting). Regardless, the concept has been commonly interpreted as some form of equality – i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this paper, we argue that fairness in recommender systems does not necessarily imply equality, but instead it should consider a distribution of resources based on merits and needs.We present a probabilistic framework based ongeneralized cross entropy to evaluate fairness of recommender systems under this perspective, wherewe showthat the proposed framework is flexible and explanatory by allowing to incorporate domain knowledge (through an ideal fair distribution) that can help to understand which item or user aspects a recommendation algorithm is over- or under-representing. Results on two real-world datasets show the merits of the proposed evaluation framework both in terms of user and item fairnessThis work was supported in part by the Center for Intelligent Information Retrieval and in part by project TIN2016-80630-P (MINECO

    Exploiting Synergy Between Ontologies and Recommender Systems

    No full text
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    Exploiting synergy between ontologies and recommender systems

    Get PDF
    Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured

    New accurate, explainable, and unbiased machine learning models for recommendation with implicit feedback.

    Get PDF
    Recommender systems have become ubiquitous Artificial Intelligence (AI) tools that play an important role in filtering online information in our daily lives. Whether we are shopping, browsing movies, or listening to music online, AI recommender systems are working behind the scene to provide us with curated and personalized content, that has been predicted to be relevant to our interest. The increasing prevalence of recommender systems has challenged researchers to develop powerful algorithms that can deliver recommendations with increasing accuracy. In addition to the predictive accuracy of recommender systems, recent research has also started paying attention to their fairness, in particular with regard to the bias and transparency of their predictions. This dissertation contributes to advancing the state of the art in fairness in AI by proposing new Machine Learning models and algorithms that aim to improve the user\u27s experience when receiving recommendations, with a focus that is positioned at the nexus of three objectives, namely accuracy, transparency, and unbiasedness of the predictions. In our research, we focus on state-of-the-art Collaborative Filtering (CF) recommendation approaches trained on implicit feedback data. More specifically, we address the limitations of two established deep learning approaches in two distinct recommendation settings, namely recommendation with user profiles and sequential recommendation. First, we focus on a state of the art pairwise ranking model, namely Bayesian Personalized Ranking (BPR), which has been found to outperform pointwise models in predictive accuracy in the recommendation with the user profiles setting. Specifically, we address two limitations of BPR: (1) BPR is a black box model that does not explain its outputs, thus limiting the user\u27s trust in the recommendations, and the analyst\u27s ability to scrutinize a model\u27s outputs; and (2) BPR is vulnerable to exposure bias due to the data being Missing Not At Random (MNAR). This exposure bias usually translates into an unfairness against the least popular items because they risk being under-exposed by the recommender system. We propose a novel explainable loss function and a corresponding model called Explainable Bayesian Personalized Ranking (EBPR) that generates recommendations along with item-based explanations. Then, we theoretically quantify the additional exposure bias resulting from the explainability, and use it as a basis to propose an unbiased estimator for the ideal EBPR loss. This being done, we perform an empirical study on three real-world benchmarking datasets that demonstrate the advantages of our proposed models, compared to existing state of the art techniques. Next, we shift our attention to sequential recommendation systems and focus on modeling and mitigating exposure bias in BERT4Rec, which is a state-of-the-art recommendation approach based on bidirectional transformers. The bi-directional representation capacity in BERT4Rec is based on the Cloze task, a.k.a. Masked Language Model, which consists of predicting randomly masked items within the sequence, assuming that the true interacted item is the most relevant one. This results in an exposure bias, where non-interacted items with low exposure propensities are assumed to be irrelevant. Thus far, the most common approach to mitigating exposure bias in recommendation has been Inverse Propensity Scoring (IPS), which consists of down-weighting the interacted predictions in the loss function in proportion to their propensities of exposure, yielding a theoretically unbiased learning. We first argue and prove that IPS does not extend to sequential recommendation because it fails to account for the sequential nature of the problem. We then propose a novel propensity scoring mechanism, that we name Inverse Temporal Propensity Scoring (ITPS), which is used to theoretically debias the Cloze task in sequential recommendation. We also rely on the ITPS framework to propose a bidirectional transformer-based model called ITPS-BERT4Rec. Finally, we empirically demonstrate the debiasing capabilities of our proposed approach and its robustness to the severity of exposure bias. Our proposed explainable approach in recommendation with user profiles, EBPR, showed an increase in ranking accuracy of about 4% and an increase in explainability of about 7% over the baseline BPR model when performing experiments on real-world recommendation datasets. Moreover, experiments on a real-world unbiased dataset demonstrated the importance of coupling explainability and exposure debiasing in capturing the true preferences of the user with a significant improvement of 1% over the baseline unbiased model UBPR. Furthermore, coupling explainability with exposure debiasing was also empirically proven to mitigate popularity bias with an improvement in popularity debiasing metrics of over 10% on three real-world recommendation tasks over the unbiased UBPR model. These results demonstrate the viability of our proposed approaches in recommendation with user profiles and their capacity to improve the user\u27s experience in recommendation by better capturing and modeling their true preferences, improving the explainability of the recommendations, and presenting them with more diverse recommendations that span a larger portion of the item catalog. On the other hand, our proposed approach in sequential recommendation ITPS-BERT4Rec has demonstrated a significant increase of 1% in terms of modeling the true preferences of the user in a semi-synthetic setting over the state-of-the-art sequential recommendation model BERT4Rec while also being unbiased in terms of exposure. Similarly, ITPS-BERT4Rec showed an average increase of 8.7% over BERT4Rec in three real-world recommendation settings. Moreover, empirical experiments demonstrated the robustness of our proposed ITPS-BERT4Rec model to increasing levels of exposure bias and its stability in terms of variance. Furthermore, experiments on popularity debiasing showed a significant advantage of our proposed ITPS-BERT4Rec model for both the short and long term sequences. Finally, ITPS-BERT4Rec showed respective improvements of around 60%, 470%, and 150% over vanilla BERT4Rec in capturing the temporal dependencies between the items within the sequences of interactions for three different evaluation metrics. These results demonstrate the potential of our proposed unbiased estimator to improve the user experience in the context of sequential recommendation by presenting them with more accurate and diverse recommendations that better match their true preferences and the sequential dependencies between the recommended items

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Robust Recommender System: A Survey and Future Directions

    Full text link
    With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development
    corecore