404 research outputs found

    Direct Acyclic Graph based Ledger for Internet of Things: Performance and Security Analysis

    Get PDF
    Direct Acyclic Graph (DAG)-based ledger and the corresponding consensus algorithm has been identified as a promising technology for Internet of Things (IoT). Compared with Proof-of-Work (PoW) and Proof-of-Stake (PoS) that have been widely used in blockchain, the consensus mechanism designed on DAG structure (simply called as DAG consensus) can overcome some shortcomings such as high resource consumption, high transaction fee, low transaction throughput and long confirmation delay. However, the theoretic analysis on the DAG consensus is an untapped venue to be explored. To this end, based on one of the most typical DAG consensuses, Tangle, we investigate the impact of network load on the performance and security of the DAG-based ledger. Considering unsteady network load, we first propose a Markov chain model to capture the behavior of DAG consensus process under dynamic load conditions. The key performance metrics, i.e., cumulative weight and confirmation delay are analysed based on the proposed model. Then, we leverage a stochastic model to analyse the probability of a successful double-spending attack in different network load regimes. The results can provide an insightful understanding of DAG consensus process, e.g., how the network load affects the confirmation delay and the probability of a successful attack. Meanwhile, we also demonstrate the trade-off between security level and confirmation delay, which can act as a guidance for practical deployment of DAG-based ledgers.Comment: accepted by IEEE Transactions on Networkin

    When Internet of Things meets blockchain: challenges in distributed consensus

    Get PDF
    Blockchain has been regarded as a promising technology for IoT, since it provides significant solutions for decentralized networks that can address trust and security concerns, high maintenance cost problems, and so on. The decentralization provided by blockchain can be largely attributed to the use of a consensus mechanism, which enables peer-to-peer trading in a distributed manner without the involvement of any third party. This article starts by introducing the basic concept of blockchain and illustrating why a consensus mechanism plays an indispensable role in a blockchain enabled IoT system. Then we discuss the main ideas of two famous consensus mechanisms, PoW and PoS, and list their limitations in IoT. Next, two mainstream DAG based consensus mechanisms, the Tangle and Hashgraph, are reviewed to show why DAG consensus is more suitable for IoT system than PoW and PoS. Potential issues and challenges of DAG based consensus mechanisms to be addressed in the future are discussed in the last section

    Performance analysis and comparison of PoW, PoS and DAG based blockchains

    Get PDF
    In the blockchain, the consensus mechanism plays a key role in maintaining the security and legitimation of contents recorded in the blocks. Various blockchain consensus mechanisms have been proposed. However, there is no technical analysis and comparison as a guideline to determine which type of consensus mechanism should be adopted in a specific scenario/application. To this end, this work investigates three mainstream consensus mechanisms in the blockchain, namely, Proof of Work (PoW), Proof of Stake (PoS), and Direct Acyclic Graph (DAG), and derives their performances in terms of the average time to generate a new block, the confirmation delay, the Transaction Per Second (TPS) and the confirmation failure probability. The results show that the consensus process is affected by both network resource (computation power/coin age, buffer size) and network load conditions. In addition, it shows that PoW and PoS are more sensitive to the change of network resource while DAG is more sensitive to network load conditions

    A P2P Networking Simulation Framework For Blockchain Studies

    Full text link
    Recently, blockchain becomes a disruptive technology of building distributed applications (DApps). Many researchers and institutions have devoted their resources to the development of more effective blockchain technologies and innovative applications. However, with the limitation of computing power and financial resources, it is hard for researchers to deploy and test their blockchain innovations in a large-scape physical network. Hence, in this dissertation, we proposed a peer-to-peer (P2P) networking simulation framework, which allows to deploy and test (simulate) a large-scale blockchain system with thousands of nodes in one single computer. We systematically reviewed existing research and techniques of blockchain simulator and evaluated their advantages and disadvantages. To achieve generality and flexibility, our simulation framework lays the foundation for simulating blockchain network with different scales and protocols. We verified our simulation framework by deploying the most famous three blockchain systems (Bitcoin, Ethereum and IOTA) in our simulation framework. We demonstrated the effectiveness of our simulation framework with the following three case studies: (a) Improve the performance of blockchain by changing key parameters or deploying new directed acyclic graph (DAG) structure protocol; (b) Test and analyze the attack response of Tangle-based blockchain (IOTA) (c) Establish and deploy a new smart grid bidding system for demand side in our simulation framework. This dissertation also points out a series of open issues for future research

    CD/CV: Blockchain-based schemes for continuous verifiability and traceability of IoT data for edge-fog-cloud

    Get PDF
    This paper presents a continuous delivery/continuous verifiability (CD/CV) method for IoT dataflows in edge¿fog¿cloud. A CD model based on extraction, transformation, and load (ETL) mechanism as well as a directed acyclic graph (DAG) construction, enable end-users to create efficient schemes for the continuous verification and validation of the execution of applications in edge¿fog¿cloud infrastructures. This scheme also verifies and validates established execution sequences and the integrity of digital assets. CV model converts ETL and DAG into business model, smart contracts in a private blockchain for the automatic and transparent registration of transactions performed by each application in workflows/pipelines created by CD model without altering applications nor edge¿fog¿cloud workflows. This model ensures that IoT dataflows delivers verifiable information for organizations to conduct critical decision-making processes with certainty. A containerized parallelism model solves portability issues and reduces/compensates the overhead produced by CD/CV operations. We developed and implemented a prototype to create CD/CV schemes, which were evaluated in a case study where user mobility information is used to identify interest points, patterns, and maps. The experimental evaluation revealed the efficiency of CD/CV to register the transactions performed in IoT dataflows through edge¿fog¿cloud in a private blockchain network in comparison with state-of-art solutions.This work has been partially supported by the project “CABAHLA-CM: Convergencia Big data-Hpc: de los sensores a las Aplicaciones” S2018/TCS-4423 from Madrid Regional Government, Spain and by the Spanish Ministry of Science and Innovation Project “New Data Intensive Computing Methods for High-End and Edge Computing Platforms (DECIDE)”. Ref. PID2019-107858GB-I00; and by the project 41756 “Plataforma tecnológica para la gestión, aseguramiento, intercambio preservación de grandes volúmenes de datos en salud construcción de un repositorio nacional de servicios de análisis de datos de salud” by the PRONACES-CONACYT, Mexic

    How does CSMA/CA affect the performance and security in wireless blockchain networks

    Get PDF
    The impact of communication transmission delay on the original blockchain, has not been well considered and studied since it is primarily designed in stable wired communication environment with high communication capacity. However, in a wireless scenario, due to the scarcity of spectrum resource, a blockchain user may have to compete for wireless channel to broadcast transactions following Media Access Control (MAC) mechanism. As a result, the communication transmission delay may be significant and pose a bottleneck on the blockchain system performance and security. To facilitate blockchain applications in wireless Industrial Internet of Things (IIoT), this paper aims to investigate whether the widely used MAC mechanism, Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA), is suitable for Wireless Blockchain Networks (WBN) or not. Based on tangle, as an example to analyze the system performance in term of confirmation delay, Transaction Per Second (TPS) and transaction loss probability by considering the impact of queueing and transmission delay caused by CSMA/CA. Next, a stochastic model is proposed to analyze the security issue taking into account the malicious double-spending attack. Simulation results provide valuable insights when running blockchain in wireless network, the performance would be limited by the traditional CSMA/CA protocol. Meanwhile, we demonstrate that the probability of launching a successful double-spending attack would be affected by CSMA/CA as well
    corecore