41,095 research outputs found

    The impact of propagation environment and traffic load on the performance of routing protocols in ad hoc networks

    Full text link
    Wireless networks are characterized by a dynamic topology triggered by the nodes mobility. Thus, the wireless multi-hops connection and the channel do not have a determinist behaviour such as: interference or multiple paths. Moreover, the nodes' invisibility makes the wireless channel difficult to detect. This wireless networks' behaviour should be scrutinized. In our study, we mainly focus on radio propagation models by observing the evolution of the routing layer's performances in terms of the characteristics of the physical layer. For this purpose, we first examine and then display the simulation findings of the impact of different radio propagation models on the performance of ad hoc networks. To fully understand how these various radio models influence the networks performance, we have compared the performances of several routing protocols (DSR, AODV, and DSDV) for each propagation model. To complete our study, a comparison of energy performance based routing protocols and propagation models are presented. In order to reach credible results, we focused on the notion of nodes' speed and the number of connections by using the well known network simulator NS-2.Comment: 13 pages, 5 figures, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 201

    Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

    Get PDF
    This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters

    Effect of user mobility and channel fading on the outage performance of UAV communications

    Get PDF
    Many wireless networks operate in a mobile environment with randomly moving user terminals. This letter analytically characterizes the impact of ground user mobility, propagation environment and channel fading on the outage performance of unmanned aerial vehicle (UAV) communications. Closed-form expressions for the outage probability using the random waypoint model for ground user mobility, UAV channel models for different propagation environments and the Nakagamim model for fading channels are derived. Furthermore, the outage analysis takes into account the effect of co-channel interference by both the stationary and mobile users. Numerical results are presented to demonstrate the interplay between the communication performance and the system parameters

    Wireless Multi Hop Access Networks and Protocols

    Get PDF
    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points to the Internet are available, and the mobile node roams to a new access point, the node has to make a decision when and how to change its point of attachment. The thesis describes how to consider the rapid fluctuations of the wireless medium, how to handle the fact that other nodes on the path to the access point are also mobile which results in frequent link and route breaks, and the impact the change of attachment has on already existing connections. Medium access and routing protocols have been developed that consider both the long term and the short term variations of a mobile wireless network. The long term variations consider the fact that as nodes are mobile, links will frequently break and new links appear and thus the network topology map is constantly redrawn. The short term variations consider the rapid fluctuations of the wireless channel caused by mobility and multi path propagation deviations. In order to achieve diversity forwarding, protocols are presented which consider the network topology and the state of the wireless channel when decisions about forwarding need to be made. The medium access protocols are able to perform multi dimensional fast link adaptation on a per packet level with forwarding considerations. This i ncludes power, rate, code and channel adaptation. This will enable the type of performance improvements that are of significant importance for the success of multi hop wireless networks

    NexGen D-TCP: Next generation dynamic TCP congestion control algorithm

    Get PDF
    With the advancement of wireless access networks and mmWave New Radio (NR), new applications emerged, which requires a high data rate. The random packet loss due to mobility and channel conditions in a wireless network is not negligible, which degrades the significant performance of the Transmission Control Protocol (TCP). The TCP has been extensively deployed for congestion control in the communication network during the last two decades. Different variants are proposed to improve the performance of TCP in various scenarios, specifically in lossy and high bandwidth-delay product (high- BDP) networks. Implementing a new TCP congestion control algorithm whose performance is applicable over a broad range of network conditions is still a challenge. In this article, we introduce and analyze a Dynamic TCP (D-TCP) congestion control algorithm overmmWave NR and LTE-A networks. The proposed D-TCP algorithm copes up with the mmWave channel fluctuations by estimating the available channel bandwidth. The estimated bandwidth is used to derive the congestion control factor N. The congestion window is increased/decreased adaptively based on the calculated congestion control factor. We evaluated the performance of D-TCP in terms of congestion window growth, goodput, fairness and compared it with legacy and existing TCP algorithms. We performed simulations of mmWave NR during LOS \u3c-\u3e NLOS transitions and showed that D-TCP curtails the impact of under-utilization during mobility. The simulation results and live air experiment points out that D-TCP achieves 32:9% gain in goodput as compared to TCPReno and attains 118:9% gain in throughput as compared to TCP-Cubic

    Packet level measurement over wireless access

    Get PDF
    PhDPerformance Measurement of the IP packet networks mainly comprise of monitoring the network performance in terms of packet losses and delays. If used appropriately, these network parameters (i.e. delay, loss and bandwidth etc) can indicate the performance status of the network and they can be used in fault and performance monitoring, network provisioning, and traffic engineering. Globally, there is a growing need for accurate network measurement to support the commercial use of IP networks. In wireless networks, transmission losses and communication delays strongly affect the performance of the network. Compared to wired networks, wireless networks experience higher levels of data dropouts, and corruption due to issues of channel fading, noise, interference and mobility. Performance monitoring is a vital element in the commercial future of broadband packet networking and the ability to guarantee quality of service in such networks is implicit in Service Level Agreements. Active measurements are performed by injecting probes, and this is widely used to determine the end to end performance. End to end delay in wired networks has been extensively investigated, and in this thesis we report on the accuracy achieved by probing for end to end delay over a wireless scenario. We have compared two probing techniques i.e. Periodic and Poisson probing, and estimated the absolute error for both. The simulations have been performed for single hop and multi- hop wireless networks. In addition to end to end latency, Active measurements have also been performed for packet loss rate. The simulation based analysis has been tried under different traffic scenarios using Poisson Traffic Models. We have sampled the user traffic using Periodic probing at different rates for single hop and multiple hop wireless scenarios. 5 Active probing becomes critical at higher values of load forcing the network to saturation much earlier. We have evaluated the impact of monitoring overheads on the user traffic, and show that even small amount of probing overhead in a wireless medium can cause large degradation in network performance. Although probing at high rate provides a good estimation of delay distribution of user traffic with large variance yet there is a critical tradeoff between the accuracy of measurement and the packet probing overhead. Our results suggest that active probing is highly affected by probe size, rate, pattern, traffic load, and nature of shared medium, available bandwidth and the burstiness of the traffic
    • 

    corecore