3,651 research outputs found

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    RFID chips: enabling the efficient exchange of information

    Get PDF
    More and more companies are using RFID radio chip technology to boost their competitiveness. Yet RFID not only enhances the efficiency of the company deploying it. It also promotes innovativeness in the economy as a whole. Nevertheless, not every RFID project driven by a technological vision will necessarily become a commercial success for the user. In any event, though, RFID will enable producers to tap sizeable potential. Considering the host of potential application areas – particularly in production, the distributive trade and the transport industry – RFID turnover is likely to increase. With the shift in market shares for individual RFID components and the exodus of production of less sophisticated products from the high-wage countries, Asia is poised to become the continent with the highest turnover.RFID, technology, transportation, logistics

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Developments in the Safety Science Domain and in Safety Management From the 1970s Till the 1979 Near Disaster at Three Mile Island

    Get PDF
    Objective: What has been the influence of general management schools and safety research into causes of accidents and disasters on managing safety from 1970 till 1979? Method: The study was limited to original articles and documents, written in English or Dutch from the period under concern. For the Netherlands, the professional journal De Veiligheid (Safety) has been consulted. Results and conclusions: Dominant management approaches started with 1) the classical management starting from the 19th century, with scientific management from the start of the 20st century as a main component. During the interwar period 2) behavioural management started, based on behaviourism, followed by 3) quantitative management from the Second World War onwards. After the war 4) modern management became important. A company was seen as an open system, interacting with an external environment with external stakeholders. These schools management were not exclusive, but have existed in the period together. Early 20th century, the U.S. 'Safety First' movement was the starting point of this knowledge development on managing safety, with cost reduction and production efficiency as key drivers. Psychological models and metaphors explained accidents from ‘unsafe acts’. And safety was managed with training and selection of reckless workers, all in line with scientific management. Supported by behavioural management, this approach remained dominant for many years, even long after World War II. Influenced by quantitative management, potential and actual disasters after the war led to two approaches; loss prevention (up-scaling process industry) and reliability engineering (inherently dangerous processes in the aerospace and nuclear industries). The distinction between process safety and occupational safety became clear after the war, and the two developed into relatively independent domains. In occupational safety in the 1970s human errors thought to be symptoms of mismanagement. The term ‘safety management’ was introduced in scientific safety literature as well as concepts as loose, and tightly coupled processes, organizational culture, incubation of a disaster and mechanisms blinding organizations for portents of disaster scenarios. Loss prevention remained technically oriented. Till 1979 there was no clear relation with safety management. Reliability engineering, based on systems theory did have that relation with the MORT technique as a management audit. The Netherlands mainly followed Anglo-Saxon developments. Late 1970s, following international safety symposia in The Hague and Delft, independent research started in The Netherland
    • …
    corecore