3,832 research outputs found

    Effects of Mirror Aberrations on Laguerre-Gaussian Beams in Interferometric Gravitational-Wave Detectors

    Get PDF
    A fundamental limit to the sensitivity of optical interferometers is imposed by Brownian thermal fluctuations of the mirrors' surfaces. This thermal noise can be reduced by using larger beams which "average out" the random fluctuations of the surfaces. It has been proposed previously that wider, higher-order Laguerre-Gaussian modes can be used to exploit this effect. In this article, we show that susceptibility to spatial imperfections of the mirrors' surfaces limits the effectiveness of this approach in interferometers used for gravitational-wave detection. Possible methods of reducing this susceptibility are also discussed.Comment: 10 pages, 11 figure

    Benchmarking of Gaussian boson sampling using two-point correlators

    Get PDF
    Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this contribution, we study two-point photon-number correlation functions to gain insight into the interference of Gaussian states in optical networks. We investigate the characteristic features of statistical signatures which enable us to distinguish classical from quantum interference. In contrast to the typical implementation of boson sampling, we find additional contributions to the correlators under study which stem from the phase dependence of Gaussian states and which are not observable when Fock states interfere. Using the first three moments, we formulate the tools required to experimentally observe signatures of quantum interference of Gaussian states using two outputs only. By considering the current architectural limitations in realistic experiments, we further show that a statistically significant discrimination between quantum and classical interference is possible even in the presence of loss, noise, and a finite photon-number resolution. Therefore, we formulate and apply a theoretical framework to benchmark the quantum features of Gaussian boson sampling under realistic conditions

    Direct probing of the Wigner function by time-multiplexed detection of photon statistics

    Full text link
    We investigate the capabilities of loss-tolerant quantum state characterization using a photon-number resolving, time-multiplexed detector (TMD). We employ the idea of probing the Wigner function point-by-point in phase space via photon parity measurements and displacement operations, replacing the conventional homodyne tomography. Our emphasis lies on reconstructing the Wigner function of non-Gaussian Fock states with highly negative values in a scheme that is based on a realistic experimental setup. In order to establish the concept of loss-tolerance for state characterization we show how losses can be decoupled from the impact of other experimental imperfections, i.e. the non-unity transmittance of the displacement beamsplitter and non-ideal mode overlap. We relate the experimentally accessible parameters to effective ones that are needed for an optimised state reconstruction. The feasibility of our approach is tested by Monte Carlo simulations, which provide bounds resulting from statistical errors that are due to limited data sets. Our results clearly show that high losses can be accepted for a defined parameter range, and moreover, that (in contrast to homodyne detection) mode mismatch results in a distinct signature, which can be evaluated by analysing the photon number oscillations of the displaced Fock states.Comment: 22 pages, 13 figures, published versio
    • …
    corecore