10 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Resource allocation and secure communication design in simultaneous wireless information and power transfer systems

    Get PDF
    Radio frequency (RF) energy transfer techniques have been regarded as the key enabling solutions to supply continuous and stable energy for the energy-constrained wireless devices. Simultaneous wireless information and power transfer (SWIPT) has been developed as a more promising RF energy transfer technique since it enables wireless information and wireless energy to access users from a same transmitted signal. Therefore, SWIPT has received remarkable attention. This thesis provides an investigation on applications and security issues of this emerging technology in various wireless communication scenarios. First, this thesis examines the application of SWIPT to a multi-user cooperative network in which the amplify-and-forward (AF) relay protocol is employed at the multi-antenna relay. A power splitting (PS) receiver architecture is utilized at each destination node to implement energy harvesting (EH) and information decoding (ID) simultaneously. The aim of this chapter is to minimize the relay transmit power by jointly designing relay beamforming vectors and PS ratios based on channel uncertainty models. The non-convex problem is converted into a semidefinite programming (SDP) problem by using the semidefinite relaxation (SDR) approach. In addition, a rank-one proof presents that the solution generated by the relaxed problem is optimal to the original problem. Second, a security issue about the SWIPT system is investigated in a cooperative network in the presence of potential eavesdroppers. The AF relay protocol and a PS receiver architecture are adopted at the multi-antenna relay and the desired destination node, respectively. Based on the system setup and the assumption of perfect channel state information (CSI), a transmit power minimization problem combined with the secrecy rate and harvested energy constraints is proposed to jointly optimize the beamforming vector and the PS ratio. The proposed optimization problem is non-convex and hard to tackle due to the issues of the quadratic terms and the coupled variables. To deal with this non-convex problem, two algorithms are proposed. In the first algorithm case, the proposed problem can be globally solved by using a two-level optimization approach which involves the SDR method and the one-dimensional (1-D) line search method. In addition, a rank reduction theorem is introduced to guarantee the tightness of the relaxation of the proposed scheme. In the second algorithm case, the proposed problem can be locally solved by exploiting a low complexity iterative algorithm which is embedded in the sequential parametric convex approximation (SPCA) method. Furthermore, the proposed optimization problem is extended to the imperfect CSI case. Third, a secure communication case is studied in an underlay multiple-input multiple-output (MIMO) cognitive radio (CR) network where the secondary transmitter (ST) provides SWIPT to receivers. In this chapter, two uncertainty channel models are proposed. One is based on the assumption that the ST has the perfect channel knowledge of the secondary information receiver (SIR) and the imperfect channel knowledge of secondary energy receivers (SERs) and primary receivers (PUs). The other one assumes that the ST only has the imperfect channel knowledge of all receivers. In each uncertainty channel model, an outage-constrained secrecy rate maximization (OC-SRM) problem combined with probability constraints is proposed to jointly optimizing the transmit covariance matrix and the artificial noise (AN)- aided covariance matrix. The designed OC-SRM problem for both models is non-convex due to the unsolvable probabilistic constraints. To solve this non-convex problem, the log determinant functions are first approximated to the easy handle the functions that the channel error terms are included in the trace function. Then, the probability constraints are converted into the deterministic constraints by exploiting the Bernstein-type inequality (BTI) approach. Finally, the reformulated problem for both models is solvable by using the existing convex tools. Last, a novel security issue is investigated in a MIMO-SWIPT downlink network where nonlinear energy receivers (ERs) are considered as the potential eavesdroppers. In this chapter, two uncertainty channel models, namely partial channel uncertainty (PCU) and full channel uncertainty (FCU), are proposed. An OC-SRM problem of each model is proposed to design the transmit signal covariance matrix while satisfying probabilistic constraints of the secrecy rate and the harvested energy. To surmount the non-convexity of the proposed OC-SRM problem in each model, several transformations and approximations are utilized. In the PCU model, the OC-SRM problem is first converted into two subproblems by introducing auxiliary variables. Then, three conservative approaches are adopted to obtain the safe approximation expressions of the probabilistic constraints, which are deterministic constraints. Moreover, an alternating optimization (AO) algorithm is proposed to iteratively solve two convex conic subproblems. In the FCU model, log determinant functions are first approximated to the trace functions. Then, the three approaches aforementioned are employed to convert probabilistic constraints into deterministic ones. The bisection method is utilized to solve the reformulated problem. Finally, the computational complexity of the proposed three approaches based on the PCU and FCU model is analyzed

    Impact of friendly jammers on secrecy multicast capacity in presence of adaptive eavesdroppers

    No full text
    We consider the problem of security in wireless multicasting for a multiple-input multiple-output (MIMO) relay-aided system. The network suffers from a group of adaptive eavesdroppers who can act as both simple eavesdroppers and hostile jammers. This paper formulates the impact of friendly jammers to improve secured communication. We derived the expressions for secrecy multicast capacities considering the absence and presence of friendly jammers. The best relay for transmission is chosen from a group of relays that aids to achieve the maximum secrecy capacity while the best jammer is selected based on competitive interference price. Numerical results show that the achievable secrecy multicast capacity increases significantly in the presence of jammer to nullify the effect of adversaries. Results under different scenarios of varying jamming and relay powers demonstrate the efficacy of friendly jammers in providing physical layer security

    Diseño de mecanismos para el desarrollo de sistemas seguros con calidad de servicio (QoS)

    Get PDF
    Seguridad y Calidad de Servicio (QoS) son aspectos ampliamente confrontados. En esta tesis se realiza un análisis detallado de las características y requisitos de seguridad y QoS en las redes candidatas a formar parte de la Internet del Futuro (IF) y de la Internet de los Objetos (IdO), así como de los mecanismos actuales para el análisis de la compensación entre mecanismos de seguridad y QoS. De este estudio se desprende la necesidad de definir nuevos modelos para la evaluación del impacto entre mecanismos de seguridad y QoS, dado que la mayor parte de los estudios centra sus esfuerzos en entornos específicos y características determinadas que no pueden ser fácilmente mapeadas a otros entornos, o cambiar dinámicamente. Por ello definimos un modelo para la composición de esquemas de definición paramétrica basado en el contexto, definido por sus siglas en inglés, Context-based Parametric Relationship Model (CPRM). Este modelo es implementado en una herramienta para la evaluación de mecanismos de Seguridad y QoS (SQT), y su rendimiento evaluado en base a la información integrada en los contextos y la dependencia paramétrica. Finalmente, para mejorar la visualización de los resultados y agilizar la comprensión del modelo definimos un sistema de recomendaciones para la herramienta SQT (SQT-RS). El análisis del modelo y de la herramienta se realiza empleando dos casos base dentro de escenarios del FI: mecanismos de autenticación en redes de sensores (WSN) y recomendaciones para la composición de mecanismos en escenarios de 5G Green sometidos a eavesdropping y jamming

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security
    corecore