3,139 research outputs found

    A Site-Specific Indoor Wireless Propagation Model

    Get PDF
    In this thesis, we explore the fundamental concepts behind the emerging field of site-specific propagation modeling for wireless communication systems. The first three chapters of background material discuss, respectively, the motivation for this study, the context of the study, and signal behavior and modeling in the predominant wireless propagation environments. A brief survey of existing ray-tracing based site-specific propagation models follows this discussion, leading naturally to the work of new model development undertaken in our thesis project. Following the detailed description of our generalized wireless channel modeling, various interference cases incorporating with this model are thoroughly discussed and results presented at the end of this thesis

    Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry

    Microwave remote sensing of soil water content

    Get PDF
    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods

    Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction

    Get PDF
    In this work, the influence of human body within the estimation of dosimetric values is analyzed. A simplified human body model, including the dispersive nature of material parameters of internal organs, skin, muscle, bones and other elements has been implemented. Such a model has been included within an indoor scenario in which an in-house 3D ray launching code has been applied to estimate received power levels within the complete scenario. The results enhance previous dosimetric estimations, while giving insight on influence of human body model in power level distribution and enabling to analyze the impact in the complete volume of the scenario.The authors wish to acknowledge the financial support of project FASTER, funded by the Consejería de Industria, Gobierno de Navarra

    Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program

    Electromagnetic model subdivision and iterative solvers for surface and volume double higher order numerical methods and applications

    Get PDF
    2019 Fall.Includes bibliographical references.Higher order methods have been established in the numerical analysis of electromagnetic structures decreasing the number of unknowns compared to the low order discretization. In order to decrease memory requirements even further, model subdivision in the computational analysis of electrically large structures has been used. The technique is based on clustering elements and solving/approximating subsystems separately, and it is often implemented in conjunction with iterative solvers. This thesis addresses unique theoretical and implementation details specific to model subdivision of the structures discretized by the Double Higher Order (DHO) elements analyzed by i) Finite Element Method - Mode Matching (FEM-MM) technique for closed-region (waveguide) structures and ii) Surface Integral Equation Method of Moments (SIE-MoM) in combination with (Multi-Level) Fast Multipole Method for open-region bodies. Besides standard application in decreasing the model size, DHO FEM-MM is applied to modeling communication system in tunnels by means of Standard Impedance Boundary Condition (SIBC), and excellent agreement is achieved with measurements performed in Massif Central tunnel. To increase accuracy of the SIE-MoM computation, novel method for numerical evaluation of the 2-D surface integrals in MoM matrix entries has been improved to achieve better accuracy than traditional method. To demonstrate its efficiency and practicality, SIE-MoM technique is applied to analysis of the rain event containing significant percentage of the oscillating drops recorded by 2D video disdrometer. An excellent agreement with previously-obtained radar measurements has been established providing the benefits of accurately modeling precipitation particles

    Implementation of an IoT Based Radar Sensor Network for Wastewater Management

    Get PDF
    Critical wastewater events such as sewer main blockages or overflows are often not detected until after the fact. These events can be costly, from both an environmental impact and monetary standpoint. A standalone, portable radar device allowing non-invasive benchmarking of sewer pumping station (SPS) pumps is presented. Further, by configuring and deploying a complete Low Power Wide Area Network (LPWAN), Shoalhaven Water (SW) now has the opportunity to create Internet of Things (IoT)-capable devices that offer freedom from the reliance on mobile network providers, whilst avoiding congestion on the existing Supervisory Control and Data Acquisition (SCADA) telemetry backbone. This network infrastructure allows for devices capable of real-time monitoring to alert of any system failures, providing an effective tool to proactively capture the current state of the sewer network between the much larger SPSs. This paper presents novel solutions to improve the current wastewater network management procedures employed by SW. This paper also offers a complete review of wastewater monitoring networks and is one of the first to offer robust testing of Long Range Wide Area Network (LoRaWAN) network capabilities in Australia. The paper also provides a comprehensive summary of the LoRa protocol and all its functions. It was found that a LPWAN, utilising the LoRaWAN protocol and deployed appropriately within a geographic area, can attain maximum transmission distances of 20 km within an urban environment and up to 35 km line of sight

    Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications

    Get PDF
    The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths. The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution. A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2. At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met
    corecore