2,156 research outputs found

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    Parameter Setting Strategy for the Controller of the DFIG Wind Turbine Considering the Small-Signal Stability of Power Grids

    Get PDF
    Due to the increasing penetration of the wind generation, the stability, especially the small-signal stability, of the power grid is much related to it. Currently, few studies considered the impact of the parameter settings of the wind turbine controller on the small-signal stability of the grid under the full range of wind conditions. In this paper, we propose a framework for deriving a set of controller parameters by interiorizing their impact on the power system stability, based on an analytic model of a 15th-order single DFIG-infinite grid connection under all wind speeds. The study results on a real wind turbine show that the controller parameters optimized for a specific wind speed may not feasible for other operational conditions yet the proposed framework can obtain a set of parameters guaranteeing the power system stability under all wind speeds

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    Parameter Setting Strategy for the Controller of the DFIG Wind Turbine Considering the Small-Signal Stability of Power Grids

    Get PDF
    Due to the increasing penetration of the wind generation, the stability, especially the small-signal stability, of the power grid is much related to it. Currently, few studies considered the impact of the parameter settings of the wind turbine controller on the small-signal stability of the grid under the full range of wind conditions. In this paper, we propose a framework for deriving a set of controller parameters by interiorizing their impact on the power system stability, based on an analytic model of a 15th-order single DFIG-infinite grid connection under all wind speeds. The study results on a real wind turbine show that the controller parameters optimized for a specific wind speed may not feasible for other operational conditions yet the proposed framework can obtain a set of parameters guaranteeing the power system stability under all wind speeds

    Impact of Power Grid Strength and PLL Parameters on Stability of Grid-Connected DFIG Wind Farm

    Get PDF
    This paper investigates the impact of power grid strength and phase-locked loop (PLL) parameters on small signal stability of grid-connected doubly fed induction generator (DFIG)-based wind farm. Modal analysis of the grid-connected DFIG wind turbine under different operating conditions and various power grid strengths are investigated at first. Modal analysis results reveal that the DFIG connected to a weak grid may easily lose stability under the heavy-duty operating conditions due to PLL oscillation. The object of this paper is to identify the PLL oscillation mechanism as well as influence factors and propose a damping solution for this oscillation mode. A simplified linear system model of the grid-connected DFIG wind turbine is proposed for analyzing the PLL oscillation. Through the complex torque coefficients method and using this model, the oscillation mechanism and influence factors including the power grid strength and the PLL parameters are identified. To suppress this PLL oscillation, a mixed H2/H∞ robust damping controller is proposed and designed for the DFIG. Electromagnetic transient simulation results of both single-DFIG system and multiply-DFIG system verify the correctness of the analysis results and effectiveness of the proposed damping controller

    Modal Analysis of Grid Connected Doubly-Fed Induction Generators

    Get PDF
    This paper presents the modal analysis of a gridconnected doubly fed induction generator (DFIG). The change in modal properties for different system parameters, operating points, and grid strengths are computed and observed. The results offer a better understanding of theDFIG intrinsic dynamics,which can also be useful for control design and model justification. Index Terms—Doubly fed induction generator, eigenvalue analysis, nonlinear dynamic model, small-signal stability.Published versio

    Effects of POD control on a DFIG wind turbine structural system

    Get PDF
    This paper investigates the effects power oscillation damping (POD) controller could have on a wind turbine structural system. Most of the published work in this area has been done using relatively simple aerodynamic and structural models of a wind turbine which cannot be used to investigate the detailed interactions between electrical and mechanical components of the wind turbine. Therefore, a detailed model that combines electrical, structural and aerodynamic characteristics of a grid-connected Doubly Fed Induction Generator (DFIG) based wind turbine has been developed by adapting the NREL (National Renewable Energy Laboratory) 5MW wind turbine model within FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code. This detailed model is used to evaluate the effects of POD controller on the wind turbine system. The results appear to indicate that the effects of POD control on the WT structural system are comparable or less significant as those caused by wind speed variations. Furthermore, the results also reveal that the effects of a transient three-phase short circuit fault on the WT structural system are much larger than those caused by the POD controller
    • …
    corecore