980 research outputs found

    MODELLING & SIMULATION HYBRID WARFARE Researches, Models and Tools for Hybrid Warfare and Population Simulation

    Get PDF
    The Hybrid Warfare phenomena, which is the subject of the current research, has been framed by the work of Professor Agostino Bruzzone (University of Genoa) and Professor Erdal Cayirci (University of Stavanger), that in June 2016 created in order to inquiry the subject a dedicated Exploratory Team, which was endorsed by NATO Modelling & Simulation Group (a panel of the NATO Science & Technology organization) and established with the participation as well of the author. The author brought his personal contribution within the ET43 by introducing meaningful insights coming from the lecture of \u201cFight by the minutes: Time and the Art of War (1994)\u201d, written by Lieutenant Colonel US Army (Rtd.) Robert Leonhard; in such work, Leonhard extensively developed the concept that \u201cTime\u201d, rather than geometry of the battlefield and/or firepower, is the critical factor to tackle in military operations and by extension in Hybrid Warfare. The critical reflection about the time - both in its quantitative and qualitative dimension - in a hybrid confrontation it is addressed and studied inside SIMCJOH, a software built around challenges that imposes literally to \u201cFight by the minutes\u201d, echoing the core concept expressed in the eponymous work. Hybrid Warfare \u2013 which, by definition and purpose, aims to keep the military commitment of both aggressor and defender at the lowest - can gain enormous profit by employing a wide variety of non-military tools, turning them into a weapon, as in the case of the phenomena of \u201cweaponization of mass migrations\u201d, as it is examined in the \u201cDies Irae\u201d simulation architecture. Currently, since migration it is a very sensitive and divisive issue among the public opinions of many European countries, cynically leveraging on a humanitarian emergency caused by an exogenous, inducted migration, could result in a high level of political and social destabilization, which indeed favours the concurrent actions carried on by other hybrid tools. Other kind of disruption however, are already available in the arsenal of Hybrid Warfare, such cyber threats, information campaigns lead by troll factories for the diffusion of fake/altered news, etc. From this perspective the author examines how the TREX (Threat network simulation for REactive eXperience) simulator is able to offer insights about a hybrid scenario characterized by an intense level of social disruption, brought by cyber-attacks and systemic faking of news. Furthermore, the rising discipline of \u201cStrategic Engineering\u201d, as envisaged by Professor Agostino Bruzzone, when matched with the operational requirements to fulfil in order to counter Hybrid Threats, it brings another innovative, as much as powerful tool, into the professional luggage of the military and the civilian employed in Defence and Homeland security sectors. Hybrid is not the New War. What is new is brought by globalization paired with the transition to the information age and rising geopolitical tensions, which have put new emphasis on hybrid hostilities that manifest themselves in a contemporary way. Hybrid Warfare is a deliberate choice of an aggressor. While militarily weak nations can resort to it in order to re-balance the odds, instead military strong nations appreciate its inherent effectiveness coupled with the denial of direct responsibility, thus circumventing the rules of the International Community (IC). In order to be successful, Hybrid Warfare should consist of a highly coordinated, sapient mix of diverse and dynamic combination of regular forces, irregular forces (even criminal elements), cyber disruption etc. all in order to achieve effects across the entire DIMEFIL/PMESII_PT spectrum. However, the owner of the strategy, i.e. the aggressor, by keeping the threshold of impunity as high as possible and decreasing the willingness of the defender, can maintain his Hybrid Warfare at a diplomatically feasible level; so the model of the capacity, willingness and threshold, as proposed by Cayirci, Bruzzone and Gunneriusson (2016), remains critical to comprehend Hybrid Warfare. Its dynamicity is able to capture the evanescent, blurring line between Hybrid Warfare and Conventional Warfare. In such contest time is the critical factor: this because it is hard to foreseen for the aggressor how long he can keep up with such strategy without risking either the retaliation from the International Community or the depletion of resources across its own DIMEFIL/PMESII_PT spectrum. Similar discourse affects the defender: if he isn\u2019t able to cope with Hybrid Threats (i.e. taking no action), time works against him; if he is, he can start to develop counter narrative and address physical countermeasures. However, this can lead, in the medium long period, to an unforeseen (both for the attacker and the defender) escalation into a large, conventional, armed conflict. The performance of operations that required more than kinetic effects drove the development of DIMEFIL/PMESII_PT models and in turn this drive the development of Human Social Culture Behavior Modelling (HCSB), which should stand at the core of the Hybrid Warfare modelling and simulation efforts. Multi Layers models are fundamental to evaluate Strategies and Support Decisions: currently there are favourable conditions to implement models of Hybrid Warfare, such as Dies Irae, SIMCJOH and TREX, in order to further develop tools and war-games for studying new tactics, execute collective training and to support decisions making and analysis planning. The proposed approach is based on the idea to create a mosaic made by HLA interoperable simulators able to be combined as tiles to cover an extensive part of the Hybrid Warfare, giving the users an interactive and intuitive environment based on the \u201cModelling interoperable Simulation and Serious Game\u201d (MS2G) approach. From this point of view, the impressive capabilities achieved by IA-CGF in human behavior modeling to support population simulation as well as their native HLA structure, suggests to adopt them as core engine in this application field. However, it necessary to highlight that, when modelling DIMEFIL/PMESII_PT domains, the researcher has to be aware of the bias introduced by the fact that especially Political and Social \u201cscience\u201d are accompanied and built around value judgement. From this perspective, the models proposed by Cayirci, Bruzzone, Guinnarson (2016) and by Balaban & Mileniczek (2018) are indeed a courageous tentative to import, into the domain of particularly poorly understood phenomena (social, politics, and to a lesser degree economics - Hartley, 2016), the mathematical and statistical instruments and the methodologies employed by the pure, hard sciences. Nevertheless, just using the instruments and the methodology of the hard sciences it is not enough to obtain the objectivity, and is such aspect the representations of Hybrid Warfare mechanics could meet their limit: this is posed by the fact that they use, as input for the equations that represents Hybrid Warfare, not physical data observed during a scientific experiment, but rather observation of the reality that assumes implicitly and explicitly a value judgment, which could lead to a biased output. Such value judgement it is subjective, and not objective like the mathematical and physical sciences; when this is not well understood and managed by the academic and the researcher, it can introduce distortions - which are unacceptable for the purpose of the Science - which could be used as well to enforce a narrative mainstream that contains a so called \u201ctruth\u201d, which lies inside the boundary of politics rather than Science. Those observations around subjectivity of social sciences vs objectivity of pure sciences, being nothing new, suggest however the need to examine the problem under a new perspective, less philosophical and more leaned toward the practical application. The suggestion that the author want make here is that the Verification and Validation process, in particular the methodology used by Professor Bruzzone in doing V&V for SIMCJOH (2016) and the one described in the Modelling & Simulation User Risk Methodology (MURM) developed by Pandolfini, Youngblood et all (2018), could be applied to evaluate if there is a bias and the extent of the it, or at least making clear the value judgment adopted in developing the DIMEFIL/PMESII_PT models. Such V&V research is however outside the scope of the present work, even though it is an offspring of it, and for such reason the author would like to make further inquiries on this particular subject in the future. Then, the theoretical discourse around Hybrid Warfare has been completed addressing the need to establish a new discipline, Strategic Engineering, very much necessary because of the current a political and economic environment which allocates diminishing resources to Defense and Homeland Security (at least in Europe). However, Strategic Engineering can successfully address its challenges when coupled with the understanding and the management of the fourth dimension of military and hybrid operations, Time. For the reasons above, and as elaborated by Leonhard and extensively discussed in the present work, addressing the concern posed by Time dimension is necessary for the success of any military or Hybrid confrontation. The SIMCJOH project, examined under the above perspective, proved that the simulator has the ability to address the fourth dimension of military and non-military confrontation. In operations, Time is the most critical factor during execution, and this was successfully transferred inside the simulator; as such, SIMCJOH can be viewed as a training tool and as well a dynamic generator of events for the MEL/MIL execution during any exercise. In conclusion, SIMCJOH Project successfully faces new challenging aspects, allowed to study and develop new simulation models in order to support decision makers, Commanders and their Staff. Finally, the question posed by Leonhard in terms of recognition of the importance of time management of military operations - nowadays Hybrid Conflict - has not been answered yet; however, the author believes that Modelling and Simulation tools and techniques can represent the safe \u201ctank\u201d where innovative and advanced scientific solutions can be tested, exploiting the advantage of doing it in a synthetic environment

    Development of a decision support tool for transit network design evaluation

    Get PDF
    Municipalities increasingly have less financial resources to spend on implementation of transport strategies and plans. This situation is putting pressure on transport professionals to minimize wasteful expenditure on projects that do not deliver high transport service improvements. As such, the need for efficient, pragmatic decision making on policy direction, infrastructure expenditure, or any transport interventions is becoming very critical. Thus, transport professionals are increasingly in need of tools to help them predict with increased accuracy the outcomes of their intended transport interventions. The City of Cape Town has a Bus Rapid Transport system called MyCiTi. Current MyCiTi operations are incurring losses. The service is kept running on the back of subsidies from the federal government. There is a need for rationalization of the system. However, with strained resources, the interventions on the system have to guarantee improvements. Overemphasis on the ability of MyCiTi BRT service to support transportation during the 2010 soccer world cup event heavily influenced the design of the network. As a result, network appraisal is one area that can be done on the system to identify areas of improvement. In this thesis, decision making support will be demonstrated using a network design appraisal process for the MyCiTi BRT system in Cape Town. The existing MyCiTi network will undergo network improvement using heuristic node insertion technique leading to multiple network scenarios in a modeling environment. Agent-Based demand mobility behavior simulation will be used on each of the network scenarios to come up with network performance indicators. These network performance indicators will be used in the multi-criteria decision analysis (MCDA) model to come up with a ranking of the network scenarios and help in deciding on the optimum network improvement intervention. Overall, findings of this research show the importance of weighting of the performance indicators. Where networks that score well in the performance indicator with the high weights also rank high. In conclusion, the study has demonstrated the importance of decision making support in interventions on complex systems like bus systems. Recommendations on the possible avenues of research stemming from this thesis have also been outlined

    Building a Frameworks for Apron Planning, Design, Optimization, Future Proofing and Expansion

    Get PDF
    Airports are a significant economic driver that impact local and national interests. As such, in an ever connected world, these critical components of infrastructure face a growing number of influences which contribute to systems complexity and frequently impede further development. The point of this dissertation is to discuss and highlight the benefit of systematic thinking as planners approach airport planning challenges and update the aging aviation infrastructure in many regions of the world. This dissertation looks at a series of three papers that, examine the impact and influences of technology, distinguishes the effects of social and procedural changes, and offers one solution to simplify systems planning and integration within the aviation industry. The first paper presented is an examination of the history of Pan American World Airways through a data centered look at the growth of the fleet. The second paper examines some of the current and impending risk broken into categories, based on an examination of socio-technical systems. The final paper offers a solution a new system that could be constructed at an airport, which could simplify an aircraft turn around xiv process and help future proof airports for some of the expected changes that will impact the aviation industry. The solution proposed in CHAPTER V offers an example of a systemic change to the development of the apron area. This new concept integrates most of the apron area systems into a single system for aircraft loading and unloading. This work shows the need to accommodate industry changes as they develop, and clearly identifies some of the most obvious challenges and risks that face the aviation industry. This work further offers one method for solving and avoiding the costly interventions usually required to overhaul a system when emergent behavior necessitates a physical change to the infrastructure of the system. As with the development of any dissertation, much of this document has been updated and improved actively throughout this process. While this is a final document there is always more that can be added. This provided a complete overview of the apron area though and provides a clear contribution to the aviation industry

    Modus D5.2 Final project results report

    Get PDF
    The Final Project Results Report of the Modus project provides a comprehensive overview of the project. First, it outlines the operational context, the project scope and the objectives in order to show the relevance of the project to the ATM Master Plan as well as other European high-level strategic mobility agendas. Based on this scope and the objectives, the report describes the work performed and discusses the key project results, including a list of all technical deliverables. Based on the work performed and the results, the report contains a detailed maturity gate assessment which described the Modus solution and how this solution has been achieved. Furthermore, the report describes the overall conclusions of the project, the technical lessons learned and identifies further R&D needs

    Delay propagation – new metrics, new insights

    Get PDF
    Network delay propagation is intimately linked with the challenges of managing passenger itineraries and corresponding connections. Airline decision-making governing these processes is driven by operational and regulatory factors. Using the first European network simulation model with explicit passenger itineraries and full delay cost estimations, we explore these factors through various flight and passenger prioritisation rules, assessing the performance impacts. Delay propagation is further characterised under the different prioritisation rules using complexity science techniques such as percolation theory and network attack. The relative effects of randomised and targeted disruption are compared

    A methodology for the design of application-specific cyber-physical social sensing co-simulators

    Get PDF
    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal

    ComplexityCosts D2.2 - Model Implementation

    Get PDF
    The primary objective of ComplexityCosts is to better understand ATM network performance trade-offs for different stakeholder investment mechanisms under certain disruptions. In this report, software implementation of the ComplexityCosts model is reported. Classes, methods and interface functions are presented with practical examples. Previous deliverables on the ComplexityCosts sub-models on passengers and traffic, mechanisms and disturbances, are updated.The primary objective of ComplexityCosts is to better understand ATM network performance trade-offs for different stakeholder investment mechanisms under certain disruptions. In this report, software implementation of the ComplexityCosts model is reported. Classes, methods and interface functions are presented with practical examples. Previous deliverables on the ComplexityCosts sub-models on passengers and traffic, mechanisms and disturbances, are updated.Postprint (published version

    On-Demand Flexible Transit in Fast-Growing Cities: The Case of Dubai

    Get PDF
    Increase in city population and size leads to growing transport demand and heterogeneous mobility habits. In turn, this may result in economic and social inequalities within the context of rapid economic growth. Provision of flexible transit in fast-growing cities is a promising strategy to overcome the limits of conventional public transport and avoid the use of private cars, towards better accessibility and social inclusion. This paper presents the case of Dubai (UAE), where a demand responsive transit service called MVMANT (a company based in Italy) has been tested in some low demand districts. The contribution of this work relies on the use of an agent-based model calibrated with Geographic Information System (GIS) real data to reproduce the service and find optimal configurations from both the perspective of the transport operator and the community. Different scenarios were simulated, by changing the vehicle assignment strategy and capacity, and comparing MVMANT with a ride-sharing service with smaller vehicles. Results suggest that route choice strategy is important to find a balance between operator and user costs, and that these types of flexible transit can satisfy transport demand with limited total costs compared to other shared mobility services. They can also be effective in satisfying fluctuating demand by adopting heterogeneous fleets of vehicles. Finally, appropriate planning and evaluation of these services are needed to fully explore their potential in covering the gap between low-quality fixed public transport and unsustainable private transport. Document type: Articl

    A framework for crowd simulation based on the JMonkey game engine

    Get PDF
    La simulación de multitudes juega un papel crucial cuando se trata del desarrollo de entornos inteligentes. La mayoría de los investigadores desarrollan simulaciones usando motores de juegos comerciales a través de los editores que éstos proporcionan. Esto di culta el poder realizar una experimentación profunda sobre simulaciones de multitudes, y fuerza que la línea de investigación deba atenerse al paradigma de desarrollo propuesto por la herramienta. El objetivo principal del trabajo desarrollado es la contribución de un simulador de multitudes basado en 3D, con una arquitectura modular y extensible, adecuada para la experimentación con simulaciones de multitudes. Este framework se centrará de forma especial en la navegación y la coordinación de multitudes sobre un modelo realista del entorno, capaz de reproducir situaciones del mundo real. El simulador incluye implementaciones de algoritmos conocidos para el movimiento de multitudes, integrando también implementaciones de terceros. El trabajo tiene en cuenta la necesidad de representaciones visualmente convincentes de la simulación más allá de las representaciones 2D, utilizadas regularmente en la literatura. Para ello, se contribuye con extensiones a herramientas de terceros que permiten importar texturas, animaciones y mallas que mejoran la calidad de la simulación. El desempeño de la simulación se demuestra en un caso de estudio donde el desafío es encontrar una población cuyo comportamiento, dentro del simulador, reproduce un determinado tráfico entrante / saliente medido en áreas específicas de un edificio. Este trabajo ha sido financiado por el proyecto MOSI-AGIL (S2013 / ICE-3019) a través de la Gobierno de la Comunidad de Madrid y Fondos Estructurales Europeos (FEDER)
    corecore