50 research outputs found

    Evaluating Realistic Performance Gains of Massive Multi-User MIMO System in Urban City Deployments

    Get PDF

    Massive MIMO real-time channel measurements and theoretic TDD downlink throughput predictions

    Get PDF

    D2.1 Performance evaluation framework

    Full text link
    This deliverable contains a proposal for a performance evaluation framework that aims at ensuring that multiple projects within 5G-PPP wireless strand can quantitatively assess and compare the performance of different 5G RAN design concepts. The report collects the vision of several 5G-PPP projects and is conceived as a living document to be further elaborated along with the 5G-PPP framework workshops planned during 2016.Weber, A.; Agyapong, P.; Rosowski, T.; Zimmerman, G.; Fallgren, M.; Sharma, S.; Kousaridas, A.... (2016). D2.1 Performance evaluation framework. https://doi.org/10.13140/RG.2.2.35447.2192

    Ondas milimétricas e MIMO massivo para otimização da capacidade e cobertura de redes heterogeneas de 5G

    Get PDF
    Today's Long Term Evolution Advanced (LTE-A) networks cannot support the exponential growth in mobile traffic forecast for the next decade. By 2020, according to Ericsson, 6 billion mobile subscribers worldwide are projected to generate 46 exabytes of mobile data traffic monthly from 24 billion connected devices, smartphones and short-range Internet of Things (IoT) devices being the key prosumers. In response, 5G networks are foreseen to markedly outperform legacy 4G systems. Triggered by the International Telecommunication Union (ITU) under the IMT-2020 network initiative, 5G will support three broad categories of use cases: enhanced mobile broadband (eMBB) for multi-Gbps data rate applications; ultra-reliable and low latency communications (URLLC) for critical scenarios; and massive machine type communications (mMTC) for massive connectivity. Among the several technology enablers being explored for 5G, millimeter-wave (mmWave) communication, massive MIMO antenna arrays and ultra-dense small cell networks (UDNs) feature as the dominant technologies. These technologies in synergy are anticipated to provide the 1000_ capacity increase for 5G networks (relative to 4G) through the combined impact of large additional bandwidth, spectral efficiency (SE) enhancement and high frequency reuse, respectively. However, although these technologies can pave the way towards gigabit wireless, there are still several challenges to solve in terms of how we can fully harness the available bandwidth efficiently through appropriate beamforming and channel modeling approaches. In this thesis, we investigate the system performance enhancements realizable with mmWave massive MIMO in 5G UDN and cellular infrastructure-to-everything (C-I2X) application scenarios involving pedestrian and vehicular users. As a critical component of the system-level simulation approach adopted in this thesis, we implemented 3D channel models for the accurate characterization of the wireless channels in these scenarios and for realistic performance evaluation. To address the hardware cost, complexity and power consumption of the massive MIMO architectures, we propose a novel generalized framework for hybrid beamforming (HBF) array structures. The generalized model reveals the opportunities that can be harnessed with the overlapped subarray structures for a balanced trade-o_ between SE and energy efficiently (EE) of 5G networks. The key results in this investigation show that mmWave massive MIMO can deliver multi-Gbps rates for 5G whilst maintaining energy-efficient operation of the network.As redes LTE-A atuais não são capazes de suportar o crescimento exponencial de tráfego que está previsto para a próxima década. De acordo com a previsão da Ericsson, espera-se que em 2020, a nível global, 6 mil milhões de subscritores venham a gerar mensalmente 46 exa bytes de tráfego de dados a partir de 24 mil milhões de dispositivos ligados à rede móvel, sendo os telefones inteligentes e dispositivos IoT de curto alcance os principais responsáveis por tal nível de tráfego. Em resposta a esta exigência, espera-se que as redes de 5a geração (5G) tenham um desempenho substancialmente superior às redes de 4a geração (4G) atuais. Desencadeado pelo UIT (União Internacional das Telecomunicações) no âmbito da iniciativa IMT-2020, o 5G irá suportar três grandes tipos de utilizações: banda larga móvel capaz de suportar aplicações com débitos na ordem de vários Gbps; comunicações de baixa latência e alta fiabilidade indispensáveis em cenários de emergência; comunicações massivas máquina-a-máquina para conectividade generalizada. Entre as várias tecnologias capacitadoras que estão a ser exploradas pelo 5G, as comunicações através de ondas milimétricas, os agregados MIMO massivo e as redes celulares ultradensas (RUD) apresentam-se como sendo as tecnologias fundamentais. Antecipa-se que o conjunto destas tecnologias venha a fornecer às redes 5G um aumento de capacidade de 1000x através da utilização de maiores larguras de banda, melhoria da eficiência espectral, e elevada reutilização de frequências respetivamente. Embora estas tecnologias possam abrir caminho para as redes sem fios com débitos na ordem dos gigabits, existem ainda vários desafios que têm que ser resolvidos para que seja possível aproveitar totalmente a largura de banda disponível de maneira eficiente utilizando abordagens de formatação de feixe e de modelação de canal adequadas. Nesta tese investigamos a melhoria de desempenho do sistema conseguida através da utilização de ondas milimétricas e agregados MIMO massivo em cenários de redes celulares ultradensas de 5a geração e em cenários 'infraestrutura celular-para-qualquer coisa' (do inglês: cellular infrastructure-to-everything) envolvendo utilizadores pedestres e veiculares. Como um componente fundamental das simulações de sistema utilizadas nesta tese é o canal de propagação, implementamos modelos de canal tridimensional (3D) para caracterizar de forma precisa o canal de propagação nestes cenários e assim conseguir uma avaliação de desempenho mais condizente com a realidade. Para resolver os problemas associados ao custo do equipamento, complexidade e consumo de energia das arquiteturas MIMO massivo, propomos um modelo inovador de agregados com formatação de feixe híbrida. Este modelo genérico revela as oportunidades que podem ser aproveitadas através da sobreposição de sub-agregados no sentido de obter um compromisso equilibrado entre eficiência espectral (ES) e eficiência energética (EE) nas redes 5G. Os principais resultados desta investigação mostram que a utilização conjunta de ondas milimétricas e de agregados MIMO massivo possibilita a obtenção, em simultâneo, de taxas de transmissão na ordem de vários Gbps e a operação de rede de forma energeticamente eficiente.Programa Doutoral em Telecomunicaçõe

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Spectral and Energy Efficiency in Cellular Mobile Radio Access Networks

    Get PDF
    Driven by the widespread use of smartphones and the release of a wide range of online packet data services, an unprecedented growth in the mobile data usage has been observed over the last decade. Network operators recently realised that the traditional approach of deploying more macrocells could not cope with this continuous growth in mobile data traffic and if no actions are taken, the energy demand to run the networks, which are able to support such traffic volumes risks to become unmanageable. In this context, comprehensive investigations of different cellular network deployments, and various algorithms have been evaluated and compared against each other in this thesis, to determine the best deployment options which are able to deliver the required capacity at a minimum level of energy consumption. A new scalable base station power consumption model was proposed and a joint evaluation framework for the relative improvements in throughput, energy consumption,and energy efficiency is adopted to avoid the inherent ambiguity of using only the bit/J energy efficiency metric. This framework was applied to many cellular network cases studies including macro only, small cell only and heterogeneous networks to show that pure small cell deployments outperform the macro and heterogeneous networks in terms of the energy consumption even if the backhaul power consumption is included in the analysis. Interestingly, picocell only deployments can attain up to 3 times increase in the throughput and 2.27 times reduction in the energy consumed when compared with macro only RANs at high target capacities, while it offers 2 times more throughput and reduces the energy consumption by 12% when compared with the macro/pico HetNet deployments. Further investigations have focused on improving the macrocell RAN by adding more sectors and more antennas. Importantly, the results have shown that adding small cells to the macrocell RAN is more energy efficient than adding more sectors even if adaptive sectorisation techniques are employed. While dimensioning the network by using MIMO base stations results in less consumed energy than using SISO base stations. The impact of traffic offloading to small cell, sleep mode, and inter-cell interference coordination techniques on the throughput and energy consumption in dense heterogeneous network deployments have been investigated. Significant improvements in the throughput and energy efficiency in bit/J were observed. However, a decrease in the energy consumption is obtained only in heterogeneous networks with small cells deployed to service clusters of users. Finally, the same framework is used to evaluate the throughput and energy consumption of massive MIMO deployments to show the superiority of massive MIMOs versus macrocell RANs, small cell deployments and heterogeneous networks in terms of achieving the target capacity with a minimum level of energy consumption. 1.6 times reduction in the energy consumption is achieved by massive MIMOs when compared with picocell only RAN at the same target capacity and when the backhaul power consumption is included in the analysis
    corecore