16 research outputs found

    Modeling the impact of land surface feedbacks on post landfall tropical cyclones

    Get PDF
    The land surface is an important component of numerical models. The land surface models are modules that control energy partitioning, compute surface exchange coefficients and form the only physical boundary in a regional scale numerical model. Thus, an accurate representation of land surface is critical to compute surface fluxes, represent the boundary layer evolution and affect changes in weather systems. Land surface can affect landfalling tropical cyclones in two ways: (i) when the cyclone is offshore and land can influence cyclones by introducing dry (or moist) air that can weaken (or strengthen) the organized convective structure of cyclones, and (ii) land can affect the evolution of cyclones post landfall by modifying the surface heat fluxes and introducing additional surface drag. In this dissertation, the hypothesis that improved representation of land surface conditions will improve the prediction of landfalling tropical cyclones is tested. To that effect, a comprehensive review of land surface effects on tropical cyclones was undertaken and an idealized study was conducted to study the impact of antecedent soil temperature on the sustenance/reintensification of tropical cyclones over land. Rainfall verification for cyclone events over the Atlantic Ocean was conducted and a comparison study between land models—GFDL Slab and Noah, also considers the sensitivity of tropical cyclone models to land surface parameterizations. The recent adoption of Noah land model with hydrology products in HWRF offers a unique opportunity to couple a river routing model to HWRF to provide streamflow estimations from the HWRF model and this dissertation has outlined techniques to real time predict streamflow for United States with HWRF forcing. Results from this dissertation research indicate antecedent land surface conditions can affect tropical cyclone evolution post landfall and high soil temperature and thermally diffusive soil texture of land surface are critical factors contributing to re-intensification/ sustenance of tropical cyclones. This idealized study, in addition to enabling improved understanding of the land surface effects on cyclones, has also led to a developmental effort to incorporate landfalling capability in the idealized framework of HWRF model and is available for use for the wider tropical cyclone community. The development of river routing coupled HWRF model could also be used in the operational mode to improve flooding and streamflow predictions and efforts are underway to integrate this new capability in HWRF. Study findings contribute to the understanding regarding the effects of land surface on landfalling cyclones and helps translate research products into HWRF’s operational framework for predicting tropical cyclones

    NORCOWE Reference Wind Farm

    Get PDF

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Proceedings of Abstracts 12th International Conference on Air Quality Science and Application

    Get PDF
    © 2020 The Author(s). This an open access work distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Final Published versio

    Barrier Layers of the Atlantic Warm Pool: Formation Mechanism and Influence on Weather and Climate

    Get PDF
    The aim of this research is to study the formation mechanism of Barrier Layers (BL) in the western tropical Atlantic and their influence on the tropical Atlantic climate at both short and long timescales. Many Coupled General Circulation Models (CGCMs) tend to overestimate the salinity in the Atlantic warm pool or the Northwestern Tropical Atlantic (NWTA) and underestimate the surface salinity in the subtropical salinity maxima region. Most of these models also suffer from a seasurface temperature (SST) bias in the NWTA region, leading to suggestions that the upper ocean salinity stratification may need to be improved in order to improve the BL simulations and thus the SST through BL-SST-Intertropical Convergence Zone (ITCZ) feedbacks. We used a CGCM to perform a set of idealized numerical experiments to understand the sensitivity of the BL and consequently SST in the NWTA region to freshwater flux and hence the upper ocean salinity strati cation. We find that the BL of the western tropical Atlantic is quite sensitive to upper ocean salinity changes in the Amazon River discharge region and the subtropical salinity maxima region. The BL phenomenon is further manifested by the formation of winter temperature inversions in our model simulations. However, in the region of improved BL simulation, the SST response is not statistically significant. SST response to Tropical Cyclones (TCs) is studied for the Atlantic region using a high-resolution coupled regional climate model (CRCM) and observational data sets. The presence of a BL, defined as the layer below the mixed layer that separates the base of the isothermal layer from the base of the isohaline layer, is found to modulate the SST response. The amplitude of TC-induced surface cooling is reduced by more than 35 percent in the presence of a BL, as a consequence of the weak thermal stratification. Furthermore, in locations when the BL exhibits a temperature inversion, TC-induced mixing can result in weak surface warming. BLs considerably reduce the rightward bias for tropical storms, but the effect is less conspicuous for TCs. The enthalpy flux into the atmosphere at the air-sea interface is enhanced by 16 percent and the increase in upper ocean potential energy due to TC-induced mixing is reduced by 25 percent in the presence of BLs. The results from the coupled model are supported by an observational analysis performed using re-analysis data sets, as well as data from Argo floats and TRMM satellite. As previous modeling and observational studies have indicated that the surface cooling caused by TC-induced mixing acts as a negative feedback for its intensity, results from our study suggest that BLs may have potential implications for TC intensity prediction
    corecore