196 research outputs found

    Physical Unclonable Function Reliability on Reconfigurable Hardware and Reliability Degradation with Temperature and Supply Voltage Variations

    Get PDF
    A hardware security solution using a Physical Unclonable Function (PUF) is a promising approach to ensure security for physical systems. PUF utilizes the inherent instance-specific parameters of physical objects and it is evaluated based on the performance parameters such as uniqueness, reliability, randomness, and tamper evidence of the Challenge and Response Pairs (CRPs). These performance parameters are affected by operating conditions such as temperature and supply voltage variations. In addition, PUF implementation on Field Programmable Gate Array (FPGA) platform is proven to be more complicated than PUF implementation on Application-Specific Integrated Circuit (ASIC) technologies. The automatic placement and routing of logic cells in FPGA can affect the performance of PUFs due to path delay imbalance. In this work, the impact of power supply and temperature variations, on the reliability of an arbiter PUF is studied. Simulation results are conducted to determine the effects of these varying conditions on the CRPs. Simulation results show that ± 10% of power supply variation can affect the reliability of an arbiter PUF by about 51%, similarly temperature fluctuation between -40 0C and +60 0C reduces the PUF reliability by 58%. In addition, a new methodology to implement a reliable arbiter PUF on an FPGA platform is presented. Instead of using an extra delay measurement module, the Chip Planner tool for FPGA is used for manually placement to minimize the path delay misalignment to less than 8 ps

    A hardware-embedded, delay-based PUF engine designed for use in cryptographic and authentication applications

    Get PDF
    Cryptographic and authentication applications in application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs), as well as codes for the activation of on-chip features, require the use of embedded secret information. The generation of secret bitstrings using physical unclonable functions, or PUFs, provides several distinct advantages over conventional methods, including the elimination of costly non-volatile memory, and the potential to increase the random bits available to applications. In this dissertation, a Hardware-Embedded Delay PUF (HELP) is proposed that is designed to leverage path delay variations that occur in the core logic macros of a chip to create random bitstrings. A thorough discussion is provided of the operational details of an embedded path timing structure called REBEL that is used by HELP to provide the timing functionality upon which HELP relies for the entropy source for the cryptographic quality of the bitstrings. Further details of the FPGA-based implementation used to prove the viability of the HELP PUF concept are included, along with a discussion of the evolution of the techniques employed in realizing the final PUF engine design. The bitstrings produced by a set of 30 FPGA boards are evaluated with regard to several statistical quality metrics including uniqueness, randomness, and stability. The stability characteristics of the bitstrings are evaluated by subjecting the FPGAs to commercial-grade temperature and power supply voltage variations. In particular, this work evaluates the reproducibility of the bitstrings generated at 0C, 25C, and 70C, and 10% of the rated supply voltage. A pair of error avoidance schemes are proposed and presented that provide significant improvements to the HELP PUF\u27s resiliency against bit-flip errors in the bitstrings

    Design, Fabrication, and Run-time Strategies for Hardware-Assisted Security

    Get PDF
    Today, electronic computing devices are critically involved in our daily lives, basic infrastructure, and national defense systems. With the growing number of threats against them, hardware-based security features offer the best chance for building secure and trustworthy cyber systems. In this dissertation, we investigate ways of making hardware-based security into a reality with primary focus on two areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs). Hardware Trojans are malicious modifications made to original IC designs or layouts that can jeopardize the integrity of hardware and software platforms. Since most modern systems critically depend on ICs, detection of hardware Trojans has garnered significant interest in academia, industry, as well as governmental agencies. The majority of existing detection schemes focus on test-time because of the limited hardware resources available at run-time. In this dissertation, we explore innovative run-time solutions that utilize on-chip thermal sensor measurements and fundamental estimation/detection theory to expose changes in IC power/thermal profile caused by Trojan activation. The proposed solutions are low overhead and also generalizable to many other sensing modalities and problem instances. Simulation results using state-of-the-art tools on publicly available Trojan benchmarks verify that our approaches can detect Trojans quickly and with few false positives. Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication variations to generate unique signatures for various security applications such as IC authentication, anti-counterfeiting, cryptographic key generation, and tamper resistance. While the existence of variations has been well exploited in PUF design, knowledge of exactly how variations come into existence has largely been ignored. Yet, for several decades the Design-for-Manufacturability (DFM) community has actually investigated the fundamental sources of these variations. Furthermore, since manufacturing variations are often harmful to IC yield, the existing DFM tools have been geared towards suppressing them (counter-intuitive for PUFs). In this dissertation, we make several improvements over current state-of-the-art work in PUFs. First, our approaches exploit existing DFM models to improve PUFs at physical layout and mask generation levels. Second, our proposed algorithms reverse the role of standard DFM tools and extend them towards improving PUF quality without harming non-PUF portions of the IC. Finally, since our approaches occur after design and before fabrication, they are applicable to all types of PUFs and have little overhead in terms of area, power, etc. The innovative and unconventional techniques presented in this dissertation should act as important building blocks for future work in cyber security

    Total Ionizing Dose Effects on a Delay-Based Physical Unclonable Function Implemented in FPGAs

    Get PDF
    Physical Unclonable Functions (PUFs) are hardware security primitives that are increasingly being used for authentication and key generation in ICs and FPGAs. For space systems, they are a promising approach to meet the needs for secure communications at low cost. To this purpose, it is essential to determine if they are reliable in the space radiation environment. In this work we evaluate the Total Ionizing Dose effects on a delay-based PUF implemented in SRAM-FPGA, namely a Ring Oscillator PUF. Several major quality metrics have been used to analyze the evolution of the PUF response with the total ionizing dose. Experimental results demonstrate that total ionizing dose has a perceptible effect on the quality of the PUF response, but it could still be used for space applications by making some appropriate corrections.Ministerio de Economía y Competitividad ESP2015-68245-C4-1-P, ESP-2015-68245-C4-4-P

    A secure arbiter physical unclonable functions (PUFs) for device authentication and identification

    Get PDF
    Recent fourth industrial revolution, industry4.0 results in lot of automation of industrial processes and brings intelligence in many home appliances in the form of IoT, enhances M2M / D2D communication where electronic devices play a prominent role. It is very much necessary to ensure security of those devices. To provide reliable authentication and identification of each device and to abort the counterfeiting from the unauthorized foundries Physical Unclonable Functions (PUFs) emerged as a one of the promising cryptographic hardware security solution. PUF is function, mathematically modeled by using uncontrollable/ unavoidable random variances of the fabrication process of the ICs. These variances can generate unpredictable, random responses can be used to overcome the difficulties such as storing the keys in non-volatile memories (NVMs) in the classical cryptography. A wide variety of PUF architectures such as Arbiter PUFs, Ring oscillator PUFs, SRAM PUFs proposed by authors. But due to its design complexity and low cost, Delay based Arbiter PUFs (D-PUFs) are considering to be a one of the security primitives in authentication applications such as low-cost IoT devices for secure key generation. This paper presents a review on the different types of Delay based PUF architectures proposed by the various authors, sources to exhibit the physical disorders in ICs, methods to estimate the Performance metrics and applications of PUF in different domains
    corecore