377 research outputs found

    Towards coordinated site monitoring and common strategies for mitigation of Radio Frequency Interference at the Italian radio telescopes

    Get PDF
    We present a project to implement a national common strategy for the mitigation of the steadily deteriorating Radio Frequency Interference (RFI) situation at the Italian radio telescopes. The project involves the Medicina, Noto, and Sardinia dish antennas and comprised the definition of a coordinated plan for site monitoring as well as the implementation of state-of-the-art hardware and software tools for RFI mitigation. Coordinated monitoring of frequency bands up to 40 GHz has been performed by means of continuous observations and dedicated measurement campaigns with fixed stations and mobile laboratories. Measurements were executed on the frequency bands allocated to the radio astronomy and space research service for shared or exclusive use and on the wider ones employed by the current and under-development receivers at the telescopes. Results of the monitoring campaigns provide a reference scenario useful to evaluate the evolution of the interference situation at the telescopes sites and a case series to test and improve the hardware and software tools we conceived to counteract radio frequency interference. We developed a multi-purpose digital backend for high spectral and time resolution observations over large bandwidths. Observational results demonstrate that the spectrometer robustness and sensitivity enable the efficient detection and analysis of interfering signals in radio astronomical data. A prototype off-line software tool for interference detection and flagging has been also implemented. This package is capable to handle the huge amount of data delivered by the most modern instrumentation on board of the Italian radio telecsopes, like dense focal plane arrays, and its modularity easen the integration of new algorithms and the re-usability in different contexts or telescopes.Comment: 39 pages, 10 Figures and 7 Tables. INAF Technical Report n. 149 (2022). http://hdl.handle.net/20.500.12386/3208

    UAV Connectivity over Cellular Networks:Investigation of Command and Control Link Reliability

    Get PDF

    Simultaneous Positioning and Communications: Hybrid Radio Architecture, Estimation Techniques, and Experimental Validation

    Get PDF
    abstract: Limited spectral access motivates technologies that adapt to diminishing resources and increasingly cluttered environments. A joint positioning-communications system is designed and implemented on \acf{COTS} hardware. This system enables simultaneous positioning of, and communications between, nodes in a distributed network of base-stations and unmanned aerial systems (UASs). This technology offers extreme ranging precision (<< 5 cm) with minimal bandwidth (10 MHz), a secure communications link to protect against cyberattacks, a small form factor that enables integration into numerous platforms, and minimal resource consumption which supports high-density networks. The positioning and communications tasks are performed simultaneously with a single, co-use waveform, which efficiently utilizes limited resources and supports higher user densities. The positioning task uses a cooperative, point-to-point synchronization protocol to estimate the relative position and orientation of all users within the network. The communications task distributes positioning information between users and secures the positioning task against cyberattacks. This high-performance system is enabled by advanced time-of-arrival estimation techniques and a modern phase-accurate distributed coherence synchronization algorithm. This technology may be installed in ground-stations, ground vehicles, unmanned aerial systems, and airborne vehicles, enabling a highly-mobile, re-configurable network with numerous applications.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore