292,972 research outputs found

    Modeling and Simulation of a Fluttering Cantilever in Channel Flow

    Get PDF
    Characterizing the dynamics of a cantilever in channel flow is relevant to applications ranging from snoring to energy harvesting. Aeroelastic flutter induces large oscillating amplitudes and sharp changes with frequency that impact the operation of these systems. The fluid-structure mechanisms that drive flutter can vary as the system parameters change, with the stability boundary becoming especially sensitive to the channel height and Reynolds number, especially when either or both are small. In this paper, we develop a coupled fluid-structure model for viscous, two-dimensional channel flow of arbitrary shape. Its flutter boundary is then compared to results of two-dimensional direct numerical simulations to explore the model's validity. Provided the non-dimensional channel height remains small, the analysis shows that the model is not only able to replicate DNS results within the parametric limits that ensure the underlying assumptions are met, but also over a wider range of Reynolds numbers and fluid-structure mass ratios. Model predictions also converge toward an inviscid model for the same geometry as Reynolds number increases

    Node-level resilience loss in dynamic complex networks

    Get PDF
    In an increasingly connected world, the resilience of networked dynamical systems is important in the fields of ecology, economics, critical infrastructures, and organizational behaviour. Whilst we understand small-scale resilience well, our understanding of large-scale networked resilience is limited. Recent research in predicting the effective network-level resilience pattern has advanced our understanding of the coupling relationship between topology and dynamics. However, a method to estimate the resilience of an individual node within an arbitrarily large complex network governed by non-linear dynamics is still lacking. Here, we develop a sequential mean-field approach and show that after 1-3 steps of estimation, the node-level resilience function can be represented with up to 98% accuracy. This new understanding compresses the higher dimensional relationship into a one-dimensional dynamic for tractable understanding, mapping the relationship between local dynamics and the statistical properties of network topology. By applying this framework to case studies in ecology and biology, we are able to not only understand the general resilience pattern of the network, but also identify the nodes at the greatest risk of failure and predict the impact of perturbations. These findings not only shed new light on the causes of resilience loss from cascade effects in networked systems, but the identification capability could also be used to prioritize protection, quantify risk, and inform the design of new system architectures

    Machine-learning-corrected quantum dynamics calculations

    Get PDF
    Quantum scattering calculations for all but low-dimensional systems at low energies must rely on approximations. All approximations introduce errors. The impact of these errors is often difficult to assess because they depend on the Hamiltonian parameters and the particular observable under study. Here, we illustrate a general, system and approximation-independent, approach to improve the accuracy of quantum dynamics approximations. The method is based on a Bayesian machine learning (BML) algorithm that is trained by a small number of rigorous results and a large number of approximate calculations, resulting in ML models that accurately capture the dependence of the dynamics results on the quantum dynamics parameters. Most importantly, the present work demonstrates that the BML models can generalize quantum results to different dynamical processes. Thus, a ML model trained by a combination of approximate and rigorous results for a certain inelastic transition can make accurate predictions for different transitions without rigorous calculations. This opens the possibility of improving the accuracy of approximate calculations for quantum transitions that are out of reach of rigorous scattering calculations.Comment: 6 pages, 4 figure
    • …
    corecore