2,363 research outputs found

    Future long-range transports: Prospects for improved fuel efficiency

    Get PDF
    A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane

    Some advantages of methane in an aircraft gas turbine

    Get PDF
    Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisions are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel efficient turboprop engine burning methane appear to be feasible

    Aeronautical fuel conservation possibilities for advanced subsonic transports

    Get PDF
    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes

    California methanol assessment. Volume 1: Summary report

    Get PDF
    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered

    CF6 performance improvement

    Get PDF
    Potential CF6 engine performance improvements directed at reduced fuel consumption were identified and screened relative to airline acceptability and are reviewed. The screening process developed to provide evaluations of fuel savings and economic factors including return on investment and direct operating cost is described. In addition, assessments of development risk and production potential are made. Several promising concepts selected for full-scale development based on a ranking involving these factors are discussed

    ANALYZING THE COSTS TO RECONFIGURE THE U.S. NAVY PLATFORM TO SUPPORT THE SINGLE FUEL CONCEPT - JP5

    Get PDF
    This research analyzes the reconfiguration costs of U.S. Navy amphibious assault vessels along with fuel depots at Defense Fuel Support Point (DFSP) to support the Single Fuel Concept (SFC). Previous research confirms that SFC would further improve military objectives and missions in a contested environment. The reconfiguration from F-76 to JP-5 would benefit logistic support, maintenance requirement, time on stations, and fuel posture. We gathered the most recent maintenance repair contracts and analyzed the data to determine the cost of reconfiguration. Using a Gantt chart, we show the series of actions that various stakeholders need to take prior to a ship entering the maintenance availability cycle as well as future actions to ensure maintenance is planned, executed, and completed. Since the energy content of JP-5 is lower than F-76, we analyze the total cost of using JP-5 in the deployment phase of operation. Furthermore, we conduct regression analysis on both fuel prices to estimate the delta percentage between both fuel products. This thesis recommends that stakeholders consider the overall long-term benefit of reconfiguration as the cost of conversion is reasonable, but transition to JP-5 requires time.Lieutenant Commander, United States NavyLieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Study of advanced fuel system concepts for commercial aircraft and engines

    Get PDF
    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term

    California Methanol Assessment; Volume II, Technical Report

    Get PDF
    A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol. Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis
    • …
    corecore