274 research outputs found

    Measurement of Temperature Distribution Based on Optical Fiber-Sensing Technology and Tunable Diode Laser Absorption Spectroscopy

    Get PDF
    Temperature is an important physical quantity in most industrial processes. Distributed temperature sensor (DTS), fiber Bragg grating (FBG), and tunable diode laser absorption spectroscopy (TDLAS) are three primary techniques for temperature measurement using fiber optic sensing and spectrum technology. The DTS system can monitor space temperature field along the fiber in real time. In addition, it also can locate a fire source using two sections of optical fibers which are placed orthogonally to each other. The FBG temperature sensor is used to measure the point temperature. The temperature sensitivity of the bare FBG is 10.68 pm/°C and the linearity is 0.99954 in the range of 30–100°C. Based on tunable diode laser absorption spectroscopy (TDLAS), two-dimensional (2D) distribution reconstructions of gas temperature are realized using an algebraic reconstruction technique (ART). The results are in agreement with the simulation results, and the time resolution is less than 1 s

    Light Propagation and Gas Absorption Studies in Turbid Media Using Tunable Diode Llaser Techniques

    Get PDF
    Optical absorption spectroscopy is a widely used analytical tool for constituent analysis in many applications. According to the Beer-Lambert law, the transmitted light intensity through a homogeneous medium is an exponential function of the product of the concentration, the total pathlength, and the absorption cross-section of the absorbing substance. By studying the intensity loss at the unique absorption band of the absorbing substance, its concentration can be retrieved. However, this method will encounter some difficulties if the light is not only absorbed but also strongly scattered in the material, e.g., in a turbid medium (biological tissues, porous ceramics, wood), which results in an unknown absorption pathlength. Such a problem can be solved by studying light propagation with different theoretical models, and the scattering and absorption properties are then retrieved. One aim of the present thesis work is to develop a new experimental approach to study light propagation in turbid media – frequency-modulated light scattering interferometry (FMLSI), originating from the well-known frequency-modulated continuous-wave technique in telecommunication field. This method provides new possibilities to study optical properties and Brownian motion simultaneously, which is particularly useful in biomedical applications, food science, and for colloidal suspensions in general. Another important application of absorption spectroscopy is to monitor gas concentration in turbid media, where the gas absorption pathlength is a priori unknown due to heavy light scattering in the porous medium. The technique is referred to as gas in scattering media absorption spectroscopy (GASMAS), and is based on the principle that the absorption spectrum of gases is much narrower than that for the solid- or liquid-phase host materials. By linearly scanning the wavelength of the light source across an absorption line of the gas and examining the absorption imprint superimposed on the transmitted light signal, the very weak intensity loss due to the gas of interest can be measured for gas concentration assessment. In order to obtain the absolute gas concentration, a focus in the present thesis work is to determine the gas absorption pathlength in turbid media. The FMLSI technique is proposed to obtain the mean optical pathlength – the total pathlength through both the pores and the matrix material. The combined method of FMLSI and GASMAS techniques is then developed to study porous media, where an average gas concentration in the porous media can be obtained. A conventional method for pathlength or optical properties determination – frequency domain photon migration – is also combined with the GASMAS technique to study the total gas absorption pathlength and the porosities of ceramics, which, as a result, also contributes to further understanding of light propagation in porous media. Another method is also proposed to get the absolute gas concentration without knowing the optical pathlength. It is based on absorption line shape analysis – relying on the fact that the line shape depends upon the concentration of the buffer gas. This method is found to be very useful for, e.g., gas concentration monitoring in food packaging

    A stability and spatial-resolution enhanced laser absorption spectroscopy tomographic sensor for complex combustion flame diagnosis

    Get PDF
    A novel stable laser absorption spectroscopy (LAS) tomographic sensor with enhanced stability and spatial resolution is developed and applied to complex combustion flame diagnosis. The sensor reduces the need for laser collimation and alignment even in extremely harsh environments and improves the stability of the received laser signal. Furthermore, a new miniaturized laser emission module was designed to achieve multi-degree of freedom adjustment. The full optical paths can be sampled by 8 receivers, with such arrangement, the equipment cost can be greatly reduced, at the same time, the spatial resolution is improved. In fact, 100 emitted laser paths are realized in a limited space of 200mm×200 mm with the highest spatial resolution of 1.67mm×1.67 mm. The stability and penetrating spatial resolution of the LAS tomographic sensor were validated by both simulation and field experiments on the afterburner flames. Tests under two representative experiment states, i.e., the main combustion and the afterburner operation states, were conducted. Results show that the error under the main combustion state was about 4.32% and, 5.38% at the afterburner operation state. It has been proven that this proposed sensor can provide better tomographic measurements for combustion diagnosis, as an effective tool for improving performances of afterburners

    Distributed Fiber Ultrasonic Sensor and Pattern Recognition Analytics

    Get PDF
    Ultrasound interrogation and structural health monitoring technologies have found a wide array of applications in the health care, aerospace, automobile, and energy sectors. To achieve high spatial resolution, large array electrical transducers have been used in these applications to harness sufficient data for both monitoring and diagnoses. Electronic-based sensors have been the standard technology for ultrasonic detection, which are often expensive and cumbersome for use in large scale deployments. Fiber optical sensors have advantageous characteristics of smaller cross-sectional area, humidity-resistance, immunity to electromagnetic interference, as well as compatibility with telemetry and telecommunications applications, which make them attractive alternatives for use as ultrasonic sensors. A unique trait of fiber sensors is its ability to perform distributed acoustic measurements to achieve high spatial resolution detection using a single fiber. Using ultrafast laser direct-writing techniques, nano-reflectors can be induced inside fiber cores to drastically improve the signal-to-noise ratio of distributed fiber sensors. This dissertation explores the applications of laser-fabricated nano-reflectors in optical fiber cores for both multi-point intrinsic Fabry–Perot (FP) interferometer sensors and a distributed phase-sensitive optical time-domain reflectometry (φ-OTDR) to be used in ultrasound detection. Multi-point intrinsic FP interferometer was based on swept-frequency interferometry with optoelectronic phase-locked loop that interrogated cascaded FP cavities to obtain ultrasound patterns. The ultrasound was demodulated through reassigned short time Fourier transform incorporating with maximum-energy ridges tracking. With tens of centimeters cavity length, this approach achieved 20kHz ultrasound detection that was finesse-insensitive, noise-free, high-sensitivity and multiplex-scalability. The use of φ-OTDR with enhanced Rayleigh backscattering compensated the deficiencies of low inherent signal-to-noise ratio (SNR). The dynamic strain between two adjacent nano-reflectors was extracted by using 3×3 coupler demodulation within Michelson interferometer. With an improvement of over 35 dB SNR, this was adequate for the recognition of the subtle differences in signals, such as footstep of human locomotion and abnormal acoustic echoes from pipeline corrosion. With the help of artificial intelligence in pattern recognition, high accuracy of events’ identification can be achieved in perimeter security and structural health monitoring, with further potential that can be harnessed using unsurprised learning

    Pathlength calibration of integrating sphere based gas cells

    Get PDF
    Integrating sphere based multipass cells, unlike typical multipass cells, have an optically rough reflective surface, which produces multiple diffuse reflections of varying lengths. This has significant advantages, including negating scattering effects in turbid samples, removing periodicity of waves (often the cause of etalon fringes), and simple cell alignment. However, the achievable pathlength is heavily dependent on the sphere wall reflectivity. This presents a challenge for ongoing in-situ measurements as potential sphere wall contamination will cause a reduction in mean reflectivity and thus a deviation from the calibrated pathlength. With this in mind, two techniques for pathlength calibration of an integrating sphere were investigated. In both techniques contamination was simulated by creating low reflectivity tabs e.g. ≈5x7mm, that could be introduced into the sphere (and removed) in a repeatable manner. For the first technique, a four beam configuration, adapted from a turbidity method used in the water industry, was created using a 5cm diameter sphere with an effective pathlength of 1m. Detection of methane gas was carried out at 1650nm. A mathematical model was derived that corrected for pathlength change due to sphere wall contamination in situ, thus enabling gas measurements to continue to be made. For example, for a concentration of 1500ppm of methane where 1.2% of the sphere wall was contaminated with a low reflectivity material, the absorption measurement error was reduced from 41% to 2% when the model was used. However some scenarios introduced errors into the correction, including contamination of the cell windows which introduced errors of, for example, up to 70% if the particulate contamination size was on the order of millimetres. The second technique used high frequency intensity modulation with phase detection to achieve pathlength calibration. Two types of modulation were tested i.e. sinusoidal modulation and pulsed modulation. The technique was implemented using an integrated circuit board which allowed for generation of modulation signals up to 150MHz with synchronous signal processing. Pathlength calibration was achieved by comparison of iii the phase shift for a known length with the measured phase shift for the integrating sphere with unknown pathlength over a range of frequencies. The results for both modulation schemes showed that, over the range of frequencies detected, 3-48MHz, the resultant phase shift varied as an arctangent function for an integrating sphere. This differed from traditional single passes where frequency and phase have a linear relationship

    Acoustic emission detection using optical fibre sensors for aerospace applications

    Get PDF
    Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels

    The monitoring and multiplexing of fiber optic sensors using chirped laser sources

    Get PDF
    A wide band linearly chirped erbium-doped fiber laser has been developed. The erbium-doped fiber laser using a rotating mirror/grating combination as one of the reflectors in a Fabry-Perot laser cavity has been tuned over a 46 nm spectral range. Linearization of the chirp rate has been achieved using feedback from a fiber Fabry-Perot interferometer (FFPI) to adjust the voltage ramp which drives the rotating mirror. In a demonstration of monitoring an array of two fiber Bragg grating (FBG) sensors, a wavelength resolution of 1.7 pm has been achieved. The linearly chirped fiber laser has been used in measuring the optical path difference (OPD) of interferometric fiber optic sensors by performing a Fourier transform of the optical signal. Multiplexing of an array of three FFPI sensors of different lengths has been demonstrated, with an OPD resolution ranging from 3.6 nm to 6.3 nm. Temperature was measured with one of the sensors over the range from 20°C to 610°C with a resolution of 0.02°C. Short FBGs are used to form the two mirrors of a fiber Bragg grating pair interferometer (FBGPI) sensor, so that the mirror reflectances change gradually as a function of temperature. Modulating the drive current of a DFB laser produces chirping of the laser frequency to scan over ~2.5 fringes of the FBGPI reflectance spectrum. Because the fringes are distinguished due to the FBG reflectance change, the ambient temperature can be determined over the range from 24 oC to 367 oC with a resolution of 0.004 oC. Multiplexing of FBGPI sensors of different lengths with a linearly chirped fiber laser has demonstrated improved sensitivity and multiplexing capacity over a conventional FBG WDM system. The FBG spectral peak position and the phase shift of an FBGPI are determined through the convolution of the sensor reflected signal with an appropriately matched reference waveform, even though the reflectance spectra for the FBGs from different sensors overlap over a wide temperature range. A spectral resolution for the FBG reflectance peak of 0.045 GHz (0.36 pm), corresponding to a temperature resolution of 0.035 oC, has been achieved
    • …
    corecore