12,222 research outputs found

    Random graph ensembles with many short loops

    Full text link
    Networks observed in the real world often have many short loops. This violates the tree-like assumption that underpins the majority of random graph models and most of the methods used for their analysis. In this paper we sketch possible research routes to be explored in order to make progress on networks with many short loops, involving old and new random graph models and ideas for novel mathematical methods. We do not present conclusive solutions of problems, but aim to encourage and stimulate new activity and in what we believe to be an important but under-exposed area of research. We discuss in more detail the Strauss model, which can be seen as the `harmonic oscillator' of `loopy' random graphs, and a recent exactly solvable immunological model that involves random graphs with extensively many cliques and short loops.Comment: 18 pages, 10 figures,Mathematical Modelling of Complex Systems (Paris 2013) conferenc

    Cycle-centrality in complex networks

    Full text link
    Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download

    Controlled generation of field squeezing with cold atomic clouds coupled to a superconducting transmission line resonator

    Full text link
    We propose an efficient method for controlled generation of field squeezing with cold atomic clouds trapped close to a superconducting transmission line resonator. It is shown that, based on the coherent strong magnetic coupling between the collective atomic spins and microwave fields in the transmission line resonator, two-mode or single mode field squeezed states can be generated through coherent control on the dynamics of the system. The degree of squeezing and preparing time can be directly controlled through tuning the external classical fields. This protocol may offer a promising platform for implementing scalable on-chip quantum information processing with continuous variables.Comment: accepted by Phys. Rev.

    Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles

    Get PDF
    We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELC
    • …
    corecore