165 research outputs found

    Electrotactile feedback applications for hand and arm interactions: A systematic review, meta-analysis, and future directions

    Get PDF
    Haptic feedback is critical in a broad range of human-machine/computer-interaction applications. However, the high cost and low portability/wearability of haptic devices remain unresolved issues, severely limiting the adoption of this otherwise promising technology. Electrotactile interfaces have the advantage of being more portable and wearable due to their reduced actuators' size, as well as their lower power consumption and manufacturing cost. The applications of electrotactile feedback have been explored in human-computer interaction and human-machine-interaction for facilitating hand-based interactions in applications such as prosthetics, virtual reality, robotic teleoperation, surface haptics, portable devices, and rehabilitation. This paper presents a technological overview of electrotactile feedback, as well a systematic review and meta-analysis of its applications for hand-based interactions. We discuss the different electrotactile systems according to the type of application. We also discuss over a quantitative congregation of the findings, to offer a high-level overview into the state-of-art and suggest future directions. Electrotactile feedback systems showed increased portability/wearability, and they were successful in rendering and/or augmenting most tactile sensations, eliciting perceptual processes, and improving performance in many scenarios. However, knowledge gaps (e.g., embodiment), technical (e.g., recurrent calibration, electrodes' durability) and methodological (e.g., sample size) drawbacks were detected, which should be addressed in future studies.Comment: 18 pages, 1 table, 8 figures, under review in Transactions on Haptics. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Upon acceptance of the article by IEEE, the preprint article will be replaced with the accepted versio

    Development of a user experience enhanced teleoperation approach

    Get PDF
    In this paper, we have investigated various techniques that can be used to enhance user experience for robot teleoperation. In our teleoperation system design, the human operator are provided with both immersive visual feedback and intuitive skill transfer interface such that when controlling a telerobot arm, a user is able to feeÄĽ in a first person perspective in terms of both visual and haptic sense. A number of high-tech devices including Omni haptic joystick, MYO armband, Oculus Rift DK2 headset, and Kinect v2 camera are integrated. The surface electromyography (sEMG) signal allows operator to naturally and efficiently transfer his/her motion skill to the robot, based on the properly designed elastic force feedback. For visual feedback, operators can control the pose of a camera on the head of the robot via the wearable visual headset, such that the operator is able to perceive from the roboĹŁs perspective. Extensive tests have been performed with human subjects to evaluate the design, and the experimental results have shown that superior performance and better user experience have been achieved by the proposed method in comparison with the traditional methods

    Electro-tactile feedback system for achieving embodiment in a tele-operated robot

    Get PDF
    Tele-operation can enable an operator to control a robot remotely in inaccessible and hazardous environments. However, controlling a robot remotely via a conventional monitor and control panel can be difficult and slow. To achieve faster and more dexterous operation of the robot, enhanced 3D perception and some form of tactile or neural feedback is needed to achieve some degree of embodiment within the robot\u27s physical structure and world. To achieve this objective we have devised an immersive tele-operation system comprised of a stereo vision headset and an electro-tactile feedback system that is worn by the operator, connected to stereo cameras and various sensors mounded on the robot. This arrangement enables the remote operator to see in 3D what the robot sees and experience what the robot feels via electro-tactile feedback in response to hand gesture based control actions. We provide experimental results showing how our tele-operation system can enable the operator to achieve better control of a mobile robot via a sense of being partially embodied within the robot

    On the use of haptic tablets for UGV teleoperation in unstructured environments: system design and evaluation

    Get PDF
    Teleoperation of Unmanned Ground Vehicles (UGVs), particularly for inspection of unstructured and unfamiliar environments still raises important challenges from the point of view of the operator interface. One of these challenges is caused by the fact that all information available to the operator is presented to the operator through a computer interface, providing only a partial view of the robot situation. The majority of existing interfaces provide information using visual, and, less frequently, sound channels. The lack of Situation Awareness (SA), caused by this partial view, may lead to an incorrect and inefficient response to the current UGV state, usually confusing and frustrating the human operator. For instance, the UGV may become stuck in debris while the operator struggles to move the robot, not understanding the cause of the UGV lack of motion. We address this problem by studying the use of haptic feedback to improve operator SA. More precisely, improving SA with respect to the traction state of the UGV, using a haptic tablet for both commanding the robot and conveying traction state to the user by haptic feedback. We report (1) a teleoperating interface, integrating a haptic tablet with an existing UGV teleoperation interface, and (2) the experimental results of a user study designed to evaluate the advantage of this interface in the teleoperation of a UGV, in a search and rescue scenario. Statistically significant results were found supporting the hypothesis that using the haptic tablet elicits a reduction in the time that the UGV spends in states without traction.info:eu-repo/semantics/publishedVersio

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Perspectives on the Evolution of Tactile, Haptic, and Thermal Displays

    Get PDF

    Sinyal Elektrik untuk Memperkaya Pengendalian Robot Jarak Jauh

    Get PDF
    A remote control operator enables a robot to perform in a hazard or area which can not be reached by humans. To control the robot, several researchers have equipped a robot with a system which can give others types of feedback information, besides of visual feedback from the robot. One of the feedback types is haptic feedback. The aim of this feedback is to make the operator become immersed with the robot. The existing researchers are using electro-mechanics system. However, these systems are complex, bulky, and hence prevent a seamless embodiment between an operator’s body. The objective of this research is to develop a haptic feedback system combined with stereo vision feedback which compact, versatile and easy to fit. This system is tested to accomplish the task using mobile robot and robot arm. The result shows that this system can help the operator to control robot better

    Full-hand electrotactile feedback using electronic skin and matrix electrodes for high-bandwidth human–machine interfacing

    Get PDF
    Tactile feedback is relevant in a broad range of human–machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject’s hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy (i.e. median{IQR} of 88.6{11}% for static and 93.3{5}% for dynamic patterns). The proposed system is an important step towards the development of a high-density human–machine interfacing between the user and a robotic han
    • …
    corecore