6,990 research outputs found

    Immersive and Collaborative Data Visualization Using Virtual Reality Platforms

    Get PDF
    Effective data visualization is a key part of the discovery process in the era of big data. It is the bridge between the quantitative content of the data and human intuition, and thus an essential component of the scientific path from data into knowledge and understanding. Visualization is also essential in the data mining process, directing the choice of the applicable algorithms, and in helping to identify and remove bad data from the analysis. However, a high complexity or a high dimensionality of modern data sets represents a critical obstacle. How do we visualize interesting structures and patterns that may exist in hyper-dimensional data spaces? A better understanding of how we can perceive and interact with multi dimensional information poses some deep questions in the field of cognition technology and human computer interaction. To this effect, we are exploring the use of immersive virtual reality platforms for scientific data visualization, both as software and inexpensive commodity hardware. These potentially powerful and innovative tools for multi dimensional data visualization can also provide an easy and natural path to a collaborative data visualization and exploration, where scientists can interact with their data and their colleagues in the same visual space. Immersion provides benefits beyond the traditional desktop visualization tools: it leads to a demonstrably better perception of a datascape geometry, more intuitive data understanding, and a better retention of the perceived relationships in the data.Comment: 6 pages, refereed proceedings of 2014 IEEE International Conference on Big Data, page 609, ISBN 978-1-4799-5665-

    Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)

    Get PDF
    We describe the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based exclusively in virtual worlds (VWs). The goals of MICA are to explore the utility of the emerging VR and VWs technologies for scientific and scholarly work in general, and to facilitate and accelerate their adoption by the scientific research community. MICA itself is an experiment in academic and scientific practices enabled by the immersive VR technologies. We describe the current and planned activities and research directions of MICA, and offer some thoughts as to what the future developments in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full resolution color figures is available at http://www.mica-vw.org/wiki/index.php/Publication

    DIVERSE: a Software Toolkit to Integrate Distributed Simulations with Heterogeneous Virtual Environments

    Get PDF
    We present DIVERSE (Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible), which is a modular collection of complimentary software packages that we have developed to facilitate the creation of distributed operator-in-the-loop simulations. In DIVERSE we introduce a novel implementation of remote shared memory (distributed shared memory) that uses Internet Protocol (IP) networks. We also introduce a new method that automatically extends hardware drivers (not in the operating system kernel driver sense) into inter-process and Internet hardware services. Using DIVERSE, a program can display in a CAVE™, ImmersaDesk™, head mounted display (HMD), desktop or laptop without modification. We have developed a method of configuring user programs at run-time by loading dynamic shared objects (DSOs), in contrast to the more common practice of creating interpreted configuration languages. We find that by loading DSOs the development time, complexity and size of DIVERSE and DIVERSE user applications is significantly reduced. Configurations to support different I/O devices, device emulators, visual displays, and any component of a user application including interaction techniques, can be changed at run-time by loading different sets of DIVERSE DSOs. In addition, interpreted run-time configuration parsers have been implemented using DIVERSE DSOs; new ones can be created as needed. DIVERSE is free software, licensed under the terms of the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL) licenses. We describe the DIVERSE architecture and demonstrate how DIVERSE was used in the development of a specific application, an operator-in-the-loop Navy ship-board crane simulator, which runs unmodified on a desktop computer and/or in a CAVE with motion base motion queuing

    Improving Big Data Visual Analytics with Interactive Virtual Reality

    Full text link
    For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.Comment: 6 pages, 8 figures, 2015 IEEE High Performance Extreme Computing Conference (HPEC '15); corrected typo

    Developing Extended Reality Projects in Support of Design, Fabrication and Procedure

    Get PDF
    The goal of this internship was to improve and create virtual reality simulations and visualizations for use in parallel with the design, fabrication, and analysis of flight ready hardware for areas like the Environmental Control and Life Support Systems (ECLSS) and also Space Systems. Specifically, my work was done in the XRSpace lab at Marshall Space Flight Center (MSFC) with assistance directly and indirectly from workers at KSC, JSC and LaRC. Led by David Reynolds, the XRSpace lab develops products for various entities at NASA. The work done in the XRSpace lab focuses on Extended Reality (XR) solutions for both simulations and visualization capabilities. The goal of the lab is to support the larger systems of NASA and to help find ways that XR technologies can streamline and optimize the design process. Extended Reality is an umbrella term that encompasses Mixed Reality, Augmented Reality, and Virtual Reality. In this capacity, I was able to complete several elements in the design, building, testing, and deployment for a variety of immersive experiences, including a VR procedure simulation, visualization aids, and a 360-image capture tool

    Forming Digital Workspace: Current State and Applications of Extended Reality in Virtual Teams

    Get PDF
    Extended reality (XR) has been widely applied as an umbrella term encompassing virtual reality, augmented reality, and mixed reality. Despite extensive research on XR applications in various contexts, little attention has been drawn to its utilization in work scenarios, particularly in virtual teams. This study is a systematic literature review of virtual teams utilizing XR in the digital workspace, incorporating related articles from four scientific databases over the past decade. The review focuses on two aspects: the current state of XR implementation in virtual teams and how technology addresses the digital collaborative process. Findings highlight team types, application areas, collaboration modes, and key actions associated with XR usage. A theoretical gap is revealed, as previous studies focus on either the technological aspects of XR or its outcomes. Additionally, this study proposes a model to illustrate how XR technologies empower virtual teams, providing valuable insight for organizations regarding its potential usage

    Developing Extended Reality Projects in Support of Design, Fabrication and Procedure

    Get PDF
    The goal of this internship was to improve and create virtual reality simulations and visualizations for use in parallel with the design, fabrication, and analysis of flight ready hardware for areas like the Environmental Control and Life Support Systems (ECLSS) and also Space Systems. Specifically, my work was done in the XRSpace lab at Marshall Space Flight Center (MSFC) with assistance directly and indirectly from workers at KSC, JSC and LaRC. Led by David Reynolds, the XRSpace lab develops products for various entities at NASA. The work done in the XRSpace lab focuses on Extended Reality (XR) solutions for both simulations and visualization capabilities. The goal of the lab is to support the larger systems of NASA and to help find ways that XR technologies can streamline and optimize the design process. Extended Reality is an umbrella term that encompasses Mixed Reality, Augmented Reality, and Virtual Reality. In this capacity, I was able to complete several elements in the design, building, testing, and deployment for a vari of immersive experiences, including a VR procedure simulation, visualization aids, and a 360-image capture tool
    • …
    corecore