9,055 research outputs found

    Immersive Facility Management – a methodological approach based on BIM and Mixed Reality for training and maintenance operations

    Get PDF
    Innovation technology in industries including manufacturing and aerospace is moving towards the use of Mixed Reality (MR) and advanced tools while Architecture, Engineering and Construction (AEC) sector is still remaining behind it. Moreover, the use of immersive technologies in the AEC digital education, as well as for professional training, is still little considered. Augmented and Mixed reality (AR/MR) have the capability to provide a “X-ray vision”, showing hidden objects in a virtual/real overlay. This feature in the digital object visualization is extremely valuable for improving operation performance and maintenance activities. The present study gives an overview of literature about the methodologies to integrate virtual technologies such as AR/MR and Building Information Modelling (BIM) to provide an immersive technology framework for training purposes together with the Digital Twin Model (DTM)-based approach. Furthermore, the Facility Management (FM) tasks’ training on complex building systems can benefit from a virtual learning approach since it provides a collaborative environment enhancing and optimizing efficiency and productivity in FM learning strategies. For this purpose, the technological feasibility is analysed in the proposed case study, focusing on the realization of a methodological framework prototype of immersive and interactive environment for building systems’ FM. Cloud computing technologies able to deal with complex and extensive information databases and to support users' navigation in geo-referenced and immersive virtual interfaces are include as well. Those ones enable the DTM-based opera-tion for building maintenance both in real-time FM operators’ training and FM tasks’ optimization

    Innovative mixed reality advanced manufacturing environment with haptic feedback

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In immersive eLearning environments, it has been demonstrated that incorporating haptic feedback improves the software's pedagogical effectiveness. Due to this and recent advancements in virtual reality (VR) and mixed reality (MR) environments, more immersive, authentic, and viable pedagogical tools have been created. However, the advanced manufacturing industry has not fully embraced mixed reality training tools. There is currently a need for effective haptic feedback techniques in advanced manufacturing environments. The MR-AVML, a proposed CNC milling machine training tool, is designed to include two forms of haptic feedback, thereby providing users with a natural and intuitive experience. This experience is achieved by tasking users with running a virtual machine seen through the Microsoft HoloLens and interacting with a physical representation of the machine controller. After conducting a pedagogical study on the environment, it was found that the MR-AVML was 6.06% more effective than a version of the environment with no haptic feedback, and only 1.35% less effective than hands-on training led by an instructor. This shows that the inclusion of haptic feedback in an advanced manufacturing training environment can improve pedagogical effectiveness

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities
    • 

    corecore