10,417 research outputs found

    Inverse monoids and immersions of 2-complexes

    Get PDF
    It is well known that under mild conditions on a connected topological space X\mathcal X, connected covers of X\mathcal X may be classified via conjugacy classes of subgroups of the fundamental group of X\mathcal X. In this paper, we extend these results to the study of immersions into 2-dimensional CW-complexes. An immersion f:D→Cf : {\mathcal D} \rightarrow \mathcal C between CW-complexes is a cellular map such that each point y∈Dy \in {\mathcal D} has a neighborhood UU that is mapped homeomorphically onto f(U)f(U) by ff. In order to classify immersions into a 2-dimensional CW-complex C\mathcal C, we need to replace the fundamental group of C\mathcal C by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex

    Constructing graphs with no immersion of large complete graphs

    Full text link
    In 1989, Lescure and Meyniel proved, for d=5,6d=5, 6, that every dd-chromatic graph contains an immersion of KdK_d, and in 2003 Abu-Khzam and Langston conjectured that this holds for all dd. In 2010, DeVos, Kawarabayashi, Mohar, and Okamura proved this conjecture for d=7d = 7. In each proof, the dd-chromatic assumption was not fully utilized, as the proofs only use the fact that a dd-critical graph has minimum degree at least d−1d - 1. DeVos, Dvo\v{r}\'ak, Fox, McDonald, Mohar, and Scheide show the stronger conjecture that a graph with minimum degree d−1d-1 has an immersion of KdK_d fails for d=10d=10 and d≥12d\geq 12 with a finite number of examples for each value of dd, and small chromatic number relative to dd, but it is shown that a minimum degree of 200d200d does guarantee an immersion of KdK_d. In this paper we show that the stronger conjecture is false for d=8,9,11d=8,9,11 and give infinite families of examples with minimum degree d−1d-1 and chromatic number d−3d-3 or d−2d-2 that do not contain an immersion of KdK_d. Our examples can be up to (d−2)(d-2)-edge-connected. We show, using Haj\'os' Construction, that there is an infinite class of non-(d−1)(d-1)-colorable graphs that contain an immersion of KdK_d. We conclude with some open questions, and the conjecture that a graph GG with minimum degree d−1d - 1 and more than ∣V(G)∣1+m(d+1)\frac{|V(G)|}{1+m(d+1)} vertices of degree at least mdmd has an immersion of KdK_d

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall
    • …
    corecore