79 research outputs found

    ?????? ?????? ???????????? ?????? ???????????? ??????????????? ?????????????????? ??? ???????????????

    Get PDF
    Department of Electrical EngineeringA Sensor system is advanced along sensor technologies are developed. The performance improvement of sensor system can be expected by using the internet of things (IoT) communication technology and artificial neural network (ANN) for data processing and computation. Sensors or systems exchanged the data through this wireless connectivity, and various systems and applications are possible to implement by utilizing the advanced technologies. And the collected data is computed using by the ANN and the efficiency of system can be also improved. Gas monitoring system is widely need from the daily life to hazardous workplace. Harmful gas can cause a respiratory disease and some gas include cancer-causing component. Even though it may cause dangerous situation due to explosion. There are various kinds of hazardous gas and its characteristics that effect on human body are different each gas. The optimal design of gas monitoring system is necessary due to each gas has different criteria such as the permissible concentration and exposure time. Therefore, in this thesis, conventional sensor system configuration, operation, and limitation are described and gas monitoring system with wireless connectivity and neural network is proposed to improve the overall efficiency. As I already mentioned above, dangerous concentration and permissible exposure time are different depending on gas types. During the gas monitoring, gas concentration is lower than a permissible level in most of case. Thus, the gas monitoring is enough with low resolution for saving the power consumption in this situation. When detecting the gas, the high-resolution is required for the accurate concentration detecting. If the gas type is varied in the above situation, the amount of calculation increases exponentially. Therefore, in the conventional systems, target specifications are decided by the highest requirement in the whole situation, and it occurs increasing the cost and complexity of readout integrated circuit (ROIC) and system. In order to optimize the specification, the ANN and adaptive ROIC are utilized to compute the complex situation and huge data processing. Thus, gas monitoring system with learning-based algorithm is proposed to improve its efficiency. In order to optimize the operation depending on situation, dual-mode ROIC that monitoring mode and precision mode is implemented. If the present gas concentration is decided to safe, monitoring mode is operated with minimal detecting accuracy for saving the power consumption. The precision mode is switched when the high-resolution or hazardous situation are detected. The additional calibration circuits are necessary for the high-resolution implementation, and it has more power consumption and design complexity. A high-resolution Analog-to-digital converter (ADC) is kind of challenges to design with efficiency way. Therefore, in order to reduce the effective resolution of ADC and power consumption, zooming correlated double sampling (CDS) circuit and prediction successive approximation register (SAR) ADC are proposed for performance optimization into precision mode. A Microelectromechanical systems (MEMS) based gas sensor has high-integration and high sensitivity, but the calibration is needed to improve its low selectivity. Conventionally, principle component analysis (PCA) is used to classify the gas types, but this method has lower accuracy in some case and hard to verify in real-time. Alternatively, ANN is powerful algorithm to accurate sensing through collecting the data and training procedure and it can be verified the gas type and concentration in real-time. ROIC was fabricated in complementary metal-oxide-semiconductor (CMOS) 180-nm process and then the efficiency of the system with adaptive ROIC and ANN algorithm was experimentally verified into gas monitoring system prototype. Also, Bluetooth supports wireless connectivity to PC and mobile and pattern recognition and prediction code for SAR ADC is performed in MATLAB. Real-time gas information is monitored by Android-based application in smartphone. The dual-mode operation, optimization of performance and prediction code are adjusted with microcontroller unit (MCU). Monitoring mode is improved by x2.6 of figure-of-merits (FoM) that compared with previous resistive interface.clos

    Caratterizzazione dello spazio architetturale di un amplificatore transconduttivo

    Get PDF
    Il presente lavoro di tesi affronta il problema della progettazione analogica a livello di sistema studiando un convertitore analogico/digitale di tipo pipeline ad elevate prestazioni in tecnologia CMOS a 0.13 um. Più specificamente, viene studiato l’amplificatore interstadio al fine di valutare l’ottimalità delle specifiche richieste nel progetto originale. Viene applicata una metodologia di progetto basata sulla esplorazione e caratterizzazione dello spazio architetturale di interesse, volta alla creazione di una libreria (Piattaforma Analogica) che racchiuda sia modelli di prestazioni dell’ amplificatore sia modelli comportamentali dello stesso da utilizzarsi per progettazione ad alto livello. Inizialmente, viene effettuata un’ analisi del primo stadio del convertitore pipeline volta a ricavare le specifiche del blocco amplificatore. La metodologia prevede un campionamento dello spazio delle prestazioni attraverso simulazione di configurazioni generate perturbando il progetto originale. Al fine di specificare lo spazio di campionamento, vengono ricavate delle relazioni che vincolano le dimensioni dei singoli dispositivi imponendo condizioni di polarizzazione, minimo guadagno e minima banda. Le relazioni vengono quindi manipolate al fine di ottenere uno schema valutativo, basato su MATLAB/Ocean, in grado di generare configurazioni casuali del circuito che rispettano le relazioni stesse. Un insieme di indici di prestazione viene ricavato dai dati delle simulazioni cui si ricorre dato lo scarso potere predittivo dei modelli analitici. Infatti, con le moderne tecnologie CMOS i parametri di merito sono legati alle dimensioni dei dispositivi attraverso equazioni non esprimibili in forma analitica. Gli indici di prestazione vengono utilizzati per la creazione di un modello di prestazione il cui scopo è di vincolare i parametri del modello comportamentale corrispondente a valori effettivamente ottenibili dall’architettura prescelta. Tale modello di prestazione può essere utilizzato per selezionare, tramite ottimizzazione a livello di sistema, un insieme di specifiche ottime per l’amplificatore in esame

    A Ringamp-Assisted, Output Capacitor-less Analog CMOS Low-Dropout Voltage Regulator

    Get PDF
    Continued advancements in state-of-the-art integrated circuits have furthered trends toward higher computational performance and increased functionality within smaller circuit area footprints, all while improving power efficiencies to meet the demands of mobile and battery-powered applications. A significant portion of these advancements have been enabled by continued scaling of CMOS technology into smaller process node sizes, facilitating faster digital systems and power optimized computation. However, this scaling has degraded classic analog amplifying circuit structures with reduced voltage headroom and lower device output resistance; and thus, lower available intrinsic gain. This work investigates these trends and their impact for fine-grain Low-Dropout (LDO) Voltage Regulators, leading to a presented design methodology and implementation of a state-of-the-art Ringamp-Assisted, Output Capacitor-less Analog CMOS LDO Voltage Regulator capable of both power scaling and process node scaling for general SoC applications

    High-Speed Radhard Mega-Pixel CIS Camera for High-Energy Physics

    Full text link
    This dissertation describes the schematic design, physical layout implementation, system-level hardware with FPGA firmware design, and testing of a camera-on-a-chip with a novel high-speed CMOS image sensor (CIS) architecture developed for a mega-pixel array. The novel features of the design include an innovative quadruple column-parallel readout (QCPRO) scheme with rolling shutter that increases pixel rate, its ability to program the frame rate and to tolerate Total Ionizing Dose effects (TID). Two versions of the architecture, a small (128 x 1,024 pixels) and large (768 x 1,024 pixels) version were designed and fabricated with a custom layout that does not include library parts. The designs achieve a performance of 20 to 4,000 frames per second (fps) and they tolerate up to 125 krads of radiation exposure. The high-speed CIS architecture proposes and implements a creative quadruple column-parallel readout (QCPRO) scheme to achieve a maximum pixel rate, 10.485 gigapixels/s. The QCPRO scheme consists of four readout blocks per column and to complete four rows of pixels readout process at one line time. Each column-level readout block includes an analog time-interleaving (ATI) sampling circuit, a switched-capacitor programmable gain amplifier (SC-PGA), a 10-bit successive-approximation register (SAR) ADC, two 10-bit memory banks. The column-parallel SAR ADC is area-efficient to be laid out in half of one pixel pitch, 10 um. The analog ATI sampling circuit has two sample-and-hold circuits. Each sampling circuit can independently complete correlated double sampling (CDS) operation. Furthermore, to deliver over 10^10 pixel data in one second, a high-speed differential Scalable Low-Voltage Signaling (SLVS) transmitter for every 16 columns is designed to have 1 Gbps/ch at 0.4 V. Two memory banks provide a ping-pong operation: one connecting to the ADC for storing digital data and the other to the SLVS for delivering data to the off-chip FPGA. Therefore, the proposed CIS architecture can achieve 10,000 frames per second for a 1,024 x 1,024 pixel array. The floor plan of the proposed CIS architecture is symmetrical having one-half of pixel rows to read out on top, and the other half read out on the bottom of the pixel array. The rolling shutter feature with multi-lines readout in parallel and oversampling technique relaxes the image artifacts for capturing fast-moving objects. The CIS camera can provide complete digital input control and digital pixel data output. Many other components are designed and integrated into the proposed CMOS imager, including the Serial Peripheral Interface (SPI), bandgap reference, serializers, phase-locked loops (PLLs), and sequencers with configuration registers. Also, the proposed CIS can program the frame rate for wider applications by modifying three parameters: input clock frequency, the region of interest, and the counter size in the sequencer. The radiation hardening feature is achieved by using the combination of enclosed geometry technique and P-type guard-rings in the 0.18 um CMOS technology. The peripheral circuits use P-type guard-rings to cut the TID-induced leakage path between device to device. Each pixel cell is radiation tolerant by using enclosed layout transistors. The pinned photodiode is also used to get low dark current, and correlated double sampling to suppress pixel-level fixed-pattern noise and reset noise. The final pixel cell is laid out in 20 x 20 um^2. The total area of the pixel array is 2.56 x 20.28 mm^2 for low-resolution imager prototype and 15.36 x 20.28 mm^2 for high-resolution imager prototype. The entire CIS camera system is developed by the implementation of the hardware and FPGA firmware of the small-format prototype with 128 x 1,024 pixels and 754 pads in a 4.24 x 25.125 mm^2 die area. Different testing methods are also briefly described for different test purposes. Measurement results validate the functionalities of the readout path, sequencer, on-chip PLLs, and the SLVS transmitters. The programmable frame rate feature is also demonstrated by checking the digital control outputs from the sequencer at different frame rates. Furthermore, TID radiation tests proved the pixels can work under 125 krads radiation exposure

    The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping

    Full text link
    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.Comment: 42 pages, 20 figures, submitted to Nuclear Instruments and Methods

    Low-power Wearable Healthcare Sensors

    Get PDF
    Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    A low-power reconfigurable analog-to-digital converter

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 197-200).This thesis presents the concept, theory and design of a low power CMOS analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption. The converter achieves the wide operating range by reconfiguring (1) its architecture between pipeline and delta-sigma modes (2) by varying its circuit parameters such as size of capacitors, length of pipeline, oversampling ratio, among others and (3) by varying the bias currents of the opamps in proportion with converter sampling frequency, accomplished through the use of a phase-locked loop. Target input signals for this ADC include high frequency and moderate resolution signals such as video and low I.F. in radio Receivers, low frequency and high resolution signals from seismic sensors and MEMs devices, and others that fall in between these extremes such as audio, voice and general purpose data-acquisition. This converter also incorporates several power reducing features such as thermal noise limited design, global converter chopping in the pipeline mode, opamp scaling, opamp sharing between consecutive stages in the pipeline mode, an opamp chopping technique in the delta-sigma mode, and other design techniques. The opamp chopping technique achieves faster closed-loop settling time and lower thermal noise than conventional design.(cont.) At a converter power supply at 3.3V, the converter achieves a bandwidth range of 0-10MHz over a resolution range of 6 -16 bits, and parameter reconfiguration time of 12 clock cycles. Its PLL lock range is measured at 20KHz to 40MHz. In the delta-sigma mode, it achieves a maximum SNR of 94dB and second and third harmonic distortions of 102dB and 95dB, respectively at 10MHz clock frequency, 9.4KHz bandwidth, and 17.6mW power. In the pipeline mode, it achieves a maximum DNL and INL of +/-0.55LSBs and +/-0.82LSBs, respectively, at 11-bits of resolution, at a clock frequency of 2.6MHz and 1MHz tone with 24.6mW of power.by Kush Gulati.Ph.D
    corecore