994 research outputs found

    Large Trajectory Models are Scalable Motion Predictors and Planners

    Full text link
    Motion prediction and planning are vital tasks in autonomous driving, and recent efforts have shifted to machine learning-based approaches. The challenges include understanding diverse road topologies, reasoning traffic dynamics over a long time horizon, interpreting heterogeneous behaviors, and generating policies in a large continuous state space. Inspired by the success of large language models in addressing similar complexities through model scaling, we introduce a scalable trajectory model called State Transformer (STR). STR reformulates the motion prediction and motion planning problems by arranging observations, states, and actions into one unified sequence modeling task. With a simple model design, STR consistently outperforms baseline approaches in both problems. Remarkably, experimental results reveal that large trajectory models (LTMs), such as STR, adhere to the scaling laws by presenting outstanding adaptability and learning efficiency. Qualitative results further demonstrate that LTMs are capable of making plausible predictions in scenarios that diverge significantly from the training data distribution. LTMs also learn to make complex reasonings for long-term planning, without explicit loss designs or costly high-level annotations

    GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving

    Full text link
    Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. While existing works focus on modeling agent interactions based on their past trajectories, their future interactions are often ignored. This paper addresses the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer framework to implement it. Specifically, we present a novel Transformer decoder structure that uses the prediction results from the previous level together with the common environment background to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the last level. Through experiments on a large-scale real-world driving dataset, we demonstrate that our model can achieve state-of-the-art prediction accuracy on the interaction prediction task. We also validate the model's capability to jointly reason about the ego agent's motion plans and other agents' behaviors in both open-loop and closed-loop planning tests, outperforming a variety of baseline methods
    • …
    corecore