108 research outputs found

    Investigations in the semi-strong product of graphs and bootstrap percolation

    Get PDF
    The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 is an edge of H. A natural subject for investigation is to determine properties of the semi-strong product in terms of those properties of its factors. We investigate distance, independence, matching, and domination in the semi-strong product Bootstrap Percolation is a process defined on a graph. We begin with an initial set of infected vertices. In each subsequent round, uninfected vertices become infected if they are adjacent to at least r infected vertices. Once infected, vertices remain infected. The parameter r is called the percolation threshold. When G is finite, the infection either stops at a proper subset of G or all of V(G) becomes infected. If all of V(G) eventually becomes infected, then we say that the infection percolates and we call the initial set of infected vertices a percolating set. The cardinality of a minimum percolating set of G with percolation threshold r is denoted m(G,r). We determine m(G,r) for certain Kneser graphs and bipartite Kneser graphs

    Gibbs and Quantum Discrete Spaces

    Get PDF
    Gibbs measure is one of the central objects of the modern probability, mathematical statistical physics and euclidean quantum field theory. Here we define and study its natural generalization for the case when the space, where the random field is defined is itself random. Moreover, this randomness is not given apriori and independently of the configuration, but rather they depend on each other, and both are given by Gibbs procedure; We call the resulting object a Gibbs family because it parametrizes Gibbs fields on different graphs in the support of the distribution. We study also quantum (KMS) analog of Gibbs families. Various applications to discrete quantum gravity are given.Comment: 37 pages, 2 figure

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Regular Embeddings of Canonical Double Coverings of Graphs

    Get PDF
    AbstractThis paper addresses the question of determining, for a given graphG, all regular maps havingGas their underlying graph, i.e., all embeddings ofGin closed surfaces exhibiting the highest possible symmetry. We show that ifGsatisfies certain natural conditions, then all orientable regular embeddings of its canonical double covering, isomorphic to the tensor productG⊗K2, can be described in terms of regular embeddings ofG. This allows us to “lift” the classification of regular embeddings of a given graph to a similar classification for its canonical double covering and to establish various properties of the “derived” maps by employing those of the “base” maps. We apply these results to determining all orientable regular embeddings of the tensor productsKn⊗K2(known as the cocktail-party graphs) and of then-dipolesDn, the graphs consisting of two vertices and n parallel edges joining them. In the first case we show, in particular, that regular embeddings ofKn⊗K2exist only ifnis a prime powerpl, and there are 2φ(n−1) orφ(n−1) isomorphism classes of such maps (whereφis Euler's function) according to whetherlis even or odd. Forleven an interesting new infinite family of regular maps is discovered. In the second case, orientable regular embeddings ofDnexist for each positive integern, and their number is a power of 2 depending on the decomposition ofninto primes

    Density Functional Theory for Hard Particles in N Dimensions

    Full text link
    Recently it has been shown that the heuristic Rosenfeld functional derives from the virial expansion for particles which overlap in one center. Here, we generalize this approach to any number of intersections. Starting from the virial expansion in Ree-Hoover diagrams, it is shown in the first part that each intersection pattern defines exactly one infinite class of diagrams. Determining their automorphism groups, we sum over all its elements and derive a generic functional. The second part proves that this functional factorizes into a convolute of integral kernels for each intersection center. We derive this kernel for N dimensional particles in the N dimensional, flat Euclidean space. The third part focuses on three dimensions and determines the functionals for up to four intersection centers, comparing the leading order to Rosenfeld's result. We close by proving a generalized form of the Blaschke, Santalo, Chern equation of integral geometry.Comment: 2 figure

    On the Embeddings of the Semi-Strong Product Graph

    Get PDF
    Over the years, a lot has been written about the three more common graph products (Cartesian product, Direct product and the Strong product), as all three of these are commutative products. This thesis investigates a non-commutative product graph, H, G, we call the Semi-Strong graph product, also referred in the literature as the Augmented Tensor and/or the Strong Tensor. We will start by discussing its basic properties and then focus on embeddings where the second factor, G, is a regular graph. We will use permutation voltage graphs and their graph coverings to compute the minimum genus for several families of graphs. The results follow work started first by A T White [12], extended by Ghidewon Abay Asmerom [1],[2], and follows the lead of Pisanski [9]. The strategy we use starts with an embedding of a graph H and then modifying H creating a pseudograph H*. H* is a voltage graph whose covering is HxG. Given the graph product HxG, where G is a regular graph and H meets certain conditions, we will use the embedding of H to study topological properties, particularly the surface on which HxG is minimally embedded
    • 

    corecore