2,533 research outputs found

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    Handling Imbalanced Data through Re-sampling: Systematic Review

    Get PDF
    Handling imbalanced data is an important issue that can affect the validity and reliability of the results. One common approach to addressing this issue is through re-sampling the data. Re-sampling is a technique that allows researchers to balance the class distribution of their dataset by either over-sampling the minority class or under-sampling the majority class. Over-sampling involves adding more copies of the minority class examples to the dataset in order to balance out the class distribution. On the other hand, under-sampling involves removing some of the majority class examples from the dataset in order to balance out the class distribution. It's also common to combine both techniques, usually called hybrid sampling. It is important to note that re-sampling techniques can have an impact on the model's performance, and it is essential to evaluate the model using different evaluation metrics and to consider other techniques such as cost-sensitive learning and anomaly detection. In addition, it is important to keep in mind that increasing the sample size is always a good idea to improve the performance of the model. In this systematic review, we aim to provide an overview of existing methods for re-sampling imbalanced data. We will focus on methods that have been proposed in the literature and evaluate their effectiveness through a thorough examination of experimental results. The goal of this review is to provide practitioners with a comprehensive understanding of the different re-sampling methods available, as well as their strengths and weaknesses, to help them make informed decisions when dealing with imbalanced data

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Large-Scale Detection of Non-Technical Losses in Imbalanced Data Sets

    Get PDF
    Non-technical losses (NTL) such as electricity theft cause significant harm to our economies, as in some countries they may range up to 40% of the total electricity distributed. Detecting NTLs requires costly on-site inspections. Accurate prediction of NTLs for customers using machine learning is therefore crucial. To date, related research largely ignore that the two classes of regular and non-regular customers are highly imbalanced, that NTL proportions may change and mostly consider small data sets, often not allowing to deploy the results in production. In this paper, we present a comprehensive approach to assess three NTL detection models for different NTL proportions in large real world data sets of 100Ks of customers: Boolean rules, fuzzy logic and Support Vector Machine. This work has resulted in appreciable results that are about to be deployed in a leading industry solution. We believe that the considerations and observations made in this contribution are necessary for future smart meter research in order to report their effectiveness on imbalanced and large real world data sets.Comment: Proceedings of the Seventh IEEE Conference on Innovative Smart Grid Technologies (ISGT 2016

    Improved Classification of Breast Cancer Data using Hybrid Techniques

    Full text link
    Breast cancer is the second leading cancer for women in developed countries including India. Many new cancer detection and treatment approaches were developed. The most effective way to reduce breast cancer deaths is detect it earlier. The frequent occurrence of breast cancer and its serious consequences have attracted worldwide attention in recent years. Problems such as low rate of accuracy and poor self-adaptability still exist in traditional diagnosis. In order to solve these problems, an Ada Boost-SVM classification algorithm, Combined with k-means is proposed in this research for the early diagnosis of breast cancer. The effectiveness of the proposed methods are examined by calculating its accuracy, confusion matrix which give important clues to the physicians for early diagnosis of breast cancer

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104
    corecore