745 research outputs found

    Spatio-temporal spectrum sensing in cognitive radio networks using Beamformer-Aided SVM algorithms

    Get PDF
    This paper addresses the problem of spectrum sensing in multi-antenna cognitive radio system using support vector machine (SVM) algorithms. First, we formulated the spectrum sensing problem under multiple primary users scenarios as a multiple state signal detection problem. Next, we propose a novel, beamformer aided feature realization strategy for enhancing the capability of the SVM for signal classification under both single and multiple primary users conditions. Then, we investigate the error correcting output codes (ECOC) based multi-class SVM algorithms and provide a multiple independent model (MIM) alternative for solving the multiple state spectrum sensing problem. The performance of the proposed detectors is quantified in terms of probability of detection, probability of false alarm, receiver operating characteristics (ROC), area under ROC curves (AuC) and overall classification accuracy. Simulation results show that the proposed detectors are robust to both temporal and joint spatio-temporal detection of spectrum holes in cognitive radio networks

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Machine learning algorithms for cognitive radio wireless networks

    Get PDF
    In this thesis new methods are presented for achieving spectrum sensing in cognitive radio wireless networks. In particular, supervised, semi-supervised and unsupervised machine learning based spectrum sensing algorithms are developed and various techniques to improve their performance are described. Spectrum sensing problem in multi-antenna cognitive radio networks is considered and a novel eigenvalue based feature is proposed which has the capability to enhance the performance of support vector machines algorithms for signal classification. Furthermore, spectrum sensing under multiple primary users condition is studied and a new re-formulation of the sensing task as a multiple class signal detection problem where each class embeds one or more states is presented. Moreover, the error correcting output codes based multi-class support vector machines algorithms is proposed and investigated for solving the multiple class signal detection problem using two different coding strategies. In addition, the performance of parametric classifiers for spectrum sensing under slow fading channel is studied. To address the attendant performance degradation problem, a Kalman filter based channel estimation technique is proposed for tracking the temporally correlated slow fading channel and updating the decision boundary of the classifiers in real time. Simulation studies are included to assess the performance of the proposed schemes. Finally, techniques for improving the quality of the learning features and improving the detection accuracy of sensing algorithms are studied and a novel beamforming based pre-processing technique is presented for feature realization in multi-antenna cognitive radio systems. Furthermore, using the beamformer derived features, new algorithms are developed for multiple hypothesis testing facilitating joint spatio-temporal spectrum sensing. The key performance metrics of the classifiers are evaluated to demonstrate the superiority of the proposed methods in comparison with previously proposed alternatives

    Collaborative Information Processing in Wireless Sensor Networks for Diffusive Source Estimation

    Get PDF
    In this dissertation, we address the issue of collaborative information processing for diffusive source parameter estimation using wireless sensor networks (WSNs) capable of sensing in dispersive medium/environment, from signal processing perspective. We begin the dissertation by focusing on the mathematical formulation of a special diffusion phenomenon, i.e., an underwater oil spill, along with statistical algorithms for meaningful analysis of sensor data leading to efficient estimation of desired parameters of interest. The objective is to obtain an analytical solution to the problem, rather than using non-model based sophisticated numerical techniques. We tried to make the physical diffusion model as much appropriate as possible, while maintaining some pragmatic and reasonable assumptions for the simplicity of exposition and analytical derivation. The dissertation studies both source localization and tracking for static and moving diffusive sources respectively. For static diffusive source localization, we investigate two parametric estimation techniques based on the maximum-likelihood (ML) and the best linear unbiased estimator (BLUE) for a special case of our obtained physical dispersion model. We prove the consistency and asymptotic normality of the obtained ML solution when the number of sensor nodes and samples approach infinity, and derive the Cramer-Rao lower bound (CRLB) on its performance. In case of a moving diffusive source, we propose a particle filter (PF) based target tracking scheme for moving diffusive source, and analytically derive the posterior Cramer-Rao lower bound (PCRLB) for the moving source state estimates as a theoretical performance bound. Further, we explore nonparametric, machine learning based estimation technique for diffusive source parameter estimation using Dirichlet process mixture model (DPMM). Since real data are often complicated, no parametric model is suitable. As an alternative, we exploit the rich tools of nonparametric Bayesian methods, in particular the DPMM, which provides us with a flexible and data-driven estimation process. We propose DPMM based static diffusive source localization algorithm and provide analytical proof of convergence. The proposed algorithm is also extended to the scenario when multiple diffusive sources of same kind are present in the diffusive field of interest. Efficient power allocation can play an important role in extending the lifetime of a resource constrained WSN. Resource-constrained WSNs rely on collaborative signal and information processing for efficient handling of large volumes of data collected by the sensor nodes. In this dissertation, the problem of collaborative information processing for sequential parameter estimation in a WSN is formulated in a cooperative game-theoretic framework, which addresses the issue of fair resource allocation for estimation task at the Fusion center (FC). The framework allows addressing either resource allocation or commitment for information processing as solutions of cooperative games with underlying theoretical justifications. Different solution concepts found in cooperative games, namely, the Shapley function and Nash bargaining are used to enforce certain kinds of fairness among the nodes in a WSN

    Identification of communication signals using learning approaches for cognitive radio applications

    Get PDF
    Signal detection, identification, and characterization are among the major challenges in aerial communication systems. The ability to detect and recognize signals using cognitive technologies is still under active development when addressing uncertainties regarding signal parameters, such as blank spaces available within the transmitted signal and the utilized bandwidth. This paper proposes a learning-based identification framework for heterogeneous signals with orthogonal frequency division multiplexing (OFDM) modulation as generated in a simulated environment at an a priori unknown frequency. The implemented region-based signal identification method utilizes cyclostationary features for robust signal detection. Signal characterization is performed using a purposely-built, lightweight, region-based convolutional neural network (R-CNN). It is shown that the proposed framework is robust in the presence of additive white Gaussian noise (AWGN) and, despite its simplicity, shows better performance compared with conventional popular network architectures, such as GoogLeNet, AlexNet, and VGG 16. The signal characterization performance is validated under two degraded environments that are unknown to the system: Doppler shifted and small-scale fading. High performance is demonstrated under both degraded conditions over a wide range of signal to noise ratios (SNRs) and it is shown that the detection probability for the proposed approach is improved over those for conventional energy detectors. It is found that the signal characterization performance deteriorates under extreme conditions, such as lower SNRs and higher Doppler shift
    • …
    corecore