122 research outputs found

    Modeling friction: From nanoscale to mesoscale

    Get PDF
    The physics of sliding friction is gaining impulse from nanoscale and mesoscale experiments, simulations, and theoretical modeling. This Colloquium reviews some recent developments in modeling and in atomistic simulation of friction, covering open-ended directions, unconventional nanofrictional systems, and unsolved problems.Comment: 26 pages, 14 figures, Rev. Mod. Phys. Colloquiu

    A review of the use of optimal transport distances for high resolution seismic imaging based on the full waveform

    Get PDF
    We consider the high-resolution seismic imaging method called full-waveform inversion (FWI). FWI is a data fitting method aimed at inverting for subsurface mechanical parameters. Despite the large adoption of FWI by the academic and industrial communities, and many successful results, FWI still suffers from severe limitations. From a mathematical standpoint, FWI is a large scale PDE-constrained optimization problem. The misfit function that is used, which measures the discrepancy between observed seismic data and data calculated through the solution of a wave propagation problem, is non-convex. After discretization, the size of the FWI problem requires the use of local optimization solvers, which are prone to converge towards local minima. Thus the success of FWI strongly depends on the choice of the initial model to ensure the convergence towards the global minimum of the misfit function. This limitation has been the motivation for a large variety of strategies. Among the different methods that have been investigated, the use of optimal transport (OT) distances-based misfit functions has been recently promoted. The leading idea is to benefit from the inherent convexity of OT distances with respect to dilation and translation to render the FWI problem more convex. However, the application of OT distances in the framework of FWI is not straightforward, as seismic data is signed, while OT has been developed for the comparison of probability measures. The purpose of this study is to review two methods that were developed to overcome this difficulty. Both have been successfully applied to field data in an industrial framework. Both make it possible to better exploit the seismic data, alleviating the sensitivity to the initial model and to various conventional workflow steps, and reducing the uncertainty attached to the subsurface mechanical parameters inversion.Comment: 18 figure

    Dynamic Models of Wasserstein-1-Type Unbalanced Transport

    Full text link
    We consider a class of convex optimization problems modelling temporal mass transport and mass change between two given mass distributions (the so-called dynamic formulation of unbalanced transport), where we focus on those models for which transport costs are proportional to transport distance. For those models we derive an equivalent, computationally more efficient static formulation, we perform a detailed analysis of the model optimizers and the associated optimal mass change and transport, and we examine which static models are generated by a corresponding equivalent dynamic one. Alongside we discuss thoroughly how the employed model formulations relate to other formulations found in the literature.Comment: to appear in ESAIM: Control, Optimisation and Calculus of Variation

    Extremal points and sparse optimization for generalized Kantorovich-Rubinstein norms

    Get PDF
    A precise characterization of the extremal points of sublevel sets of nonsmooth penalties provides both detailed information about minimizers, and optimality conditions in general classes of minimization problems involving them. Moreover, it enables the application of accelerated generalized conditional gradient methods for their efficient solution. In this manuscript, this program is adapted to the minimization of a smooth convex fidelity term which is augmented with an unbalanced transport regularization term given in the form of a generalized Kantorovich-Rubinstein norm for Radon measures. More precisely, we show that the extremal points associated to the latter are given by all Dirac delta functionals supported in the spatial domain as well as certain dipoles, i.e., pairs of Diracs with the same mass but with different signs. Subsequently, this characterization is used to derive precise first-order optimality conditions as well as an efficient solution algorithm for which linear convergence is proved under natural assumptions. This behaviour is also reflected in numerical examples for a model problem
    • …
    corecore