48,641 research outputs found

    Plasticity and awareness of bodily distortion

    Get PDF
    Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one’s body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorder

    Calculus on surfaces with general closest point functions

    Get PDF
    The Closest Point Method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys. 2008] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs

    Reorganization of retinotopic maps after occipital lobe infarction

    Full text link
    Published in final edited form as: J Cogn Neurosci. 2014 June ; 26(6): 1266–1282. doi:10.1162/jocn_a_00538.We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this motion coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy participants. Training on the motion coherence task generalized to another motion task, the motion discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT^+) and in the kinetic occipital region as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8, and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d, and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere of the patient or in either hemispheres of the healthy control participants. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of PF. However, PF was only scanned at 3 and 7 months, and the biggest shifts in patient JS were found between 8 and 11 months. Thus, it is important to carry out a prospective study with a trained and untrained group so as to determine whether the patterns of reorganization that we have observed can be further promoted by training.This work was supported by NIH grant R01NS064100 to L. M. V. Lucia M. Vaina dedicates this article to Charlie Gross, who has been a long-time collaborator and friend. I met him at the INS meeting in Beaune (France), and since then we often discussed the relationship between several aspects of high-level visual processing described in his work in monkeys physiology and my work in neuropsychology. In particular, his pioneering study of biological motion in monkeys' superior temporal lobe has influenced my own work on biological motion and has led us to coauthor a paper on this topic. Working with Charlie was a uniquely enjoyable experience. Alan Cowey and I often spoke fondly about Charlie, a dear friend and close colleague to us both, whose work, exquisite sense of humor, and unbound zest of living we both deeply admired and loved. (R01NS064100 - NIH)Accepted manuscrip
    • …
    corecore