214 research outputs found

    Fluorescence molecular tomography: Principles and potential for pharmaceutical research

    Get PDF
    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development

    Incorporation of an ultrasound and model guided permissible region improves quantitative source recovery in bioluminescence tomography

    Get PDF
    Bioluminescence imaging has shown great potential for studying and monitoring disease progression in small animal pre-clinical imaging. However, absolute bioluminescence source recovery through tomographic multi-wavelength measurements is often hindered through the lack of quantitative accuracy and suffers from both poor localisation and quantitative recovery. In this work a method to incorporate a permissible region strategy through not only a priori location (permissible region) but also based on a model of light propagation and hence light sensitivity is developed and tested using both simulations and experimental data. Reconstructions on two different numerical models (a simple slab, and the digital version of a heterogeneous mouse) show an improvement of localisation and recovery of intensity (around 25% for the slab model and around 10% for the digital mouse model). This strategy is also used with experimental data from a phantom gel, which demonstrated an improved recovered tomographic image

    Incorporation of an ultrasound and model guided permissible region improves quantitative source recovery in bioluminescence tomography

    Get PDF
    Bioluminescence imaging has shown great potential for studying and monitoring disease progression in small animal pre-clinical imaging. However, absolute bioluminescence source recovery through tomographic multi-wavelength measurements is often hindered through the lack of quantitative accuracy and suffers from both poor localisation and quantitative recovery. In this work a method to incorporate a permissible region strategy through not only a priori location (permissible region) but also based on a model of light propagation and hence light sensitivity is developed and tested using both simulations and experimental data. Reconstructions on two different numerical models (a simple slab, and the digital version of a heterogeneous mouse) show an improvement of localisation and recovery of intensity (around 25% for the slab model and around 10% for the digital mouse model). This strategy is also used with experimental data from a phantom gel, which demonstrated an improved recovered tomographic image

    Multi-modal molecular diffuse optical tomography system for small animal imaging

    Get PDF
    A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images
    • …
    corecore