4 research outputs found

    Design and Implementation of Electromagnetic Actuation System to Actuate Micro/NanoRobots in Viscous Environment

    Get PDF
    The navigation of Micro/Nanorobots (MNRs) with the ability to track a selected trajectory accurately holds significant promise for different applications in biomedicine, providing methods for diagnoses and treatments inside the human body. The critical challenge is ensuring that the required power can be generated within the MNR. Furthermore, ensuring that it is feasible for the robot to travel inside the human body with the necessary power availability. Currently, MNRs are widely driven either by exogenous power sources (light energy, magnetic fields, electric fields, acoustics fields, etc.) or by endogenous energy sources, such as chemical interaction energy. Various driving techniques have been established, including piezoelectric as a driving source, thermal driving, electro-osmotic force driven by biological bacteria, and micro-motors powered by chemical fuel. These driving techniques have some restrictions, mainly when used in biomedicine. External magnetic fields are another potential power source of MNRs. Magnetic fields can permeate deep tissues and be safe for human organisms. As a result, magnetic fields’ magnetic forces and moments can be applied to MNRs without affecting biological fluids and tissues. Due to their features and characteristics of magnetic fields in generating high power, they are naturally suited to control the electromagnetically actuated MNRs in inaccessible locations due to their ability to go through tiny spaces. From the literature, it can be inferred from the available range of actuation technologies that magnetic actuation performs better than other technologies in terms of controllability, speed, flexibility of the working environment, and far less harm may cause to people. Also, electromagnetic actuation systems may come in various configurations that offer many degrees of freedom, different working mediums, and controllability schemes. Although this is a promising field of research, further simulation studies, and analysis, new smart materials, and the development and building of new real systems physically, and testing the concepts under development from different aspects and application requirements are required to determine whether these systems could be implemented in natural clinical settings on the human body. Also, to understand the latest development in MNRs and the actuation techniques with the associated technologies. Also, there is a need to conduct studies and comparisons to conclude the main research achievements in the field, highlight the critical challenges waiting for answers, and develop new research directions to solve and improve the performance. Therefore, this thesis aims to model and analyze, simulate, design, develop, and implement (with complete hardware and software integration) an electromagnetic actuation (EMA) system to actuate MNRs in the sixdimensional (6D) motion space inside a relatively large region of interest (ROI). The second stage is a simulation; simulation and finite element analysis were conducted. COMSOL multi-physics software is used to analyze the performance of different coils and coil pairs for Helmholtz and Maxwell coil configurations and electromagnetic actuation systems. This leads to the following.: • Finite element analysis (FEA) demonstrates that the Helmholtz coils generate a uniform and consistent magnetic field within a targeted ROI, and the Maxwell coils generate a uniform magnetic gradient. • The possibility to combine Helmholtz and Maxwell coils in different space dimensions. With the ability to actuate an MNR in a 6D space: 3D as a position and 3D as orientation. • Different electromagnetic system configurations are proposed, and their effectiveness in guiding an MNR inside a mimicked blood vessel environment was assessed. • Three pairs of Helmholtz coils and three pairs of coils of Maxwell coils are combined to actuate different size MNRs inside a mimicked blood vessel environment and in 6D. Based on the modeling results, a magnetic actuation system prototype that can control different sizes MNRs was conceived. A closed-loop control algorithm was proposed, and motion analysis of the MNR was conducted and discussed for both position and orientation. Improved EMA location tracking along a chosen trajectory was achieved using a PID-based closed-loop control approach with the best possible parameters. Through the model and analysis stage, the developed system was simulated and tested using open- and closed-loop circumstances. Finally, the closedloop controlled system was concluded and simulated to verify the ability of the proposed EMA to actuate an MN under different trajectory tracking examples with different dimensionality and for different sizes of MNRs. The last stage is developing the experimental setup by manufacturing the coils and their base in-house. Drivers and power supplies are selected according to the specifications that actuate the coils to generate the required magnetic field. Three digital microscopes were integrated with the electromagnetic actuation system to deliver visual feedback aiming to track in real-time the location of the MNR in the 6D high viscous fluidic environment, which leads to enabling closed-loop control. The closed-loop control algorithm is developed to facilitate MNR trajectory tracking and minimize the error accordingly. Accordingly, different tests were carried out to check the uniformity of the magnetic field generated from the coils. Also, a test was done for the digital microscope to check that it was calibrated and it works correctly. Experimental tests were conducted in 1D, 2D plane, and 3D trajectories with two different MNR sizes. The results show the ability of the proposed EMA system to actuate the two different sizes with a tracking error of 20-45 µm depending on the axis and the size of the MNR. The experiments show the ability of the developed EMA system to hold the MNR at any point within the 3D fluidic environment while overcoming the gravity effects. A comparison was made between the results achieved (in simulation and physical experiments) and the results deduced from the literature. The comparison shows that the thesis’s outcomes regarding the error and MNR size used are significant, with better performance relative to the MNR size and value of the error

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Computational and microhydrodynamic modeling and experiments with bio-inspired swimming robots in cylindrical channels

    Get PDF
    Modeling and control of swimming untethered micro robots are important for future therapeutic medical applications. Bio-inspired propulsion methods emerge as realistic substitutes for hydrodynamic thrust generation in micro realm. Accurate modeling, power supply, and propulsion-means directly affect the mobility and maneuverability of swimming micro robots with helical or planar wave propagation. Flow field around a bio-inspired micro swimmer comprised of a spherical body and a rotating helical tail is studied with time-dependent three-dimensional computational fluid dynamics (CFD) model. Analytical hydrodynamic studies on the bodies of well known geometries submerged in viscous flows reported in literature do not address the effect of hydrodynamic interactions between the body and the tail of the robot in unbounded viscous fluids. Hydrodynamic interactions are explained qualitatively and quantitatively with the help of CFD-model. A cm-scale powered bio-inspired swimmer robot with helical tails is manufactured including a payload and a replaceable rigid helical tail. The payload includes on-board power supply and remote-control circuitry. A number of helical tails with parameterized wave geometry are used. Swimmer performed in cylindrical channels of different diameters while fully submerged in an oil-bath of high viscosity. A real-time six degrees-of-freedom microhydrodynamic model is developed and implemented to predict the rigid-body motion of the swimming robots with helical and traveling-plane-wave tails. Results of microhydrodynamic models with alternative resistance coefficients are compared against CFD simulations and in-channel swimming experiments with different tails. Validated microhydrodynamic model is further employed to study efficient geometric designs with different wave propagation methods within a predefined design space
    corecore