52,898 research outputs found

    Scale Stain: Multi-Resolution Feature Enhancement in Pathology Visualization

    Full text link
    Digital whole-slide images of pathological tissue samples have recently become feasible for use within routine diagnostic practice. These gigapixel sized images enable pathologists to perform reviews using computer workstations instead of microscopes. Existing workstations visualize scanned images by providing a zoomable image space that reproduces the capabilities of the microscope. This paper presents a novel visualization approach that enables filtering of the scale-space according to color preference. The visualization method reveals diagnostically important patterns that are otherwise not visible. The paper demonstrates how this approach has been implemented into a fully functional prototype that lets the user navigate the visualization parameter space in real time. The prototype was evaluated for two common clinical tasks with eight pathologists in a within-subjects study. The data reveal that task efficiency increased by 15% using the prototype, with maintained accuracy. By analyzing behavioral strategies, it was possible to conclude that efficiency gain was caused by a reduction of the panning needed to perform systematic search of the images. The prototype system was well received by the pathologists who did not detect any risks that would hinder use in clinical routine

    Interactive Extraction of High-Frequency Aesthetically-Coherent Colormaps

    Get PDF
    Color transfer functions (i.e. colormaps) exhibiting a high frequency luminosity component have proven to be useful in the visualization of data where feature detection or iso-contours recognition is essential. Having these colormaps also display a wide range of color and an aesthetically pleasing composition holds the potential to further aid image understanding and analysis. However producing such colormaps in an efficient manner with current colormap creation tools is difficult. We hereby demonstrate an interactive technique for extracting colormaps from artwork and pictures. We show how the rich and careful color design and dynamic luminance range of an existing image can be gracefully captured in a colormap and be utilized effectively in the exploration of complex datasets

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Layout of Multiple Views for Volume Visualization: A User Study

    Get PDF
    Abstract. Volume visualizations can have drastically different appearances when viewed using a variety of transfer functions. A problem then occurs in trying to organize many different views on one screen. We conducted a user study of four layout techniques for these multiple views. We timed participants as they separated different aspects of volume data for both time-invariant and time-variant data using one of four different layout schemes. The layout technique had no impact on performance when used with time-invariant data. With time-variant data, however, the multiple view layouts all resulted in better times than did a single view interface. Surprisingly, different layout techniques for multiple views resulted in no noticeable difference in user performance. In this paper, we describe our study and present the results, which could be used in the design of future volume visualization software to improve the productivity of the scientists who use it

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page
    • 

    corecore