3,154 research outputs found

    Direct Multifield Volume Ray Casting of Fiber Surfaces

    Get PDF
    Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction. We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data, dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data

    Multiple dataset visualization (MDV) framework for scalar volume data

    Get PDF
    Many applications require comparative analysis of multiple datasets representing different samples, conditions, time instants, or views in order to develop a better understanding of the scientific problem/system under consideration. One effective approach for such analysis is visualization of the data. In this PhD thesis, we propose an innovative multiple dataset visualization (MDV) approach in which two or more datasets of a given type are rendered concurrently in the same visualization. MDV is an important concept for the cases where it is not possible to make an inference based on one dataset, and comparisons between many datasets are required to reveal cross-correlations among them. The proposed MDV framework, which deals with some fundamental issues that arise when several datasets are visualized together, follows a multithreaded architecture consisting of three core components, data preparation/loading, visualization and rendering. The visualization module - the major focus of this study, currently deals with isosurface extraction and texture-based rendering techniques. For isosurface extraction, our all-in-memory approach keeps datasets under consideration and the corresponding geometric data in the memory. Alternatively, the only-polygons- or points-in-memory only keeps the geometric data in memory. To address the issues related to storage and computation, we develop adaptive data coherency and multiresolution schemes. The inter-dataset coherency scheme exploits the similarities among datasets to approximate the portions of isosurfaces of datasets using the isosurface of one or more reference datasets whereas the intra/inter-dataset multiresolution scheme processes the selected portions of each data volume at varying levels of resolution. The graphics hardware-accelerated approaches adopted for MDV include volume clipping, isosurface extraction and volume rendering, which use 3D textures and advanced per fragment operations. With appropriate user-defined threshold criteria, we find that various MDV techniques maintain a linear time-N relationship, improve the geometry generation and rendering time, and increase the maximum N that can be handled (N: number of datasets). Finally, we justify the effectiveness and usefulness of the proposed MDV by visualizing 3D scalar data (representing electron density distributions in magnesium oxide and magnesium silicate) from parallel quantum mechanical simulation

    Two-dimensional unsteady flow visualization by animating evenly-spaced streamlets

    Get PDF
    Flow visualization has been widely used to display and discover patterns and features in vector fields. Common applications include the representation of ocean currents and weather model data. In this thesis, a flexible method for animating vector fields is developed, based on a generalization of a Poisson disc sampling method. The algorithm has two stages; in the first streamlets are drawn into an image buffer, larger than their intended size. Before they are drawn they are tested to see if they impact on already drawn areas; if they do, they are rejected. In the second stage the ones that pass the test are drawn normal size. The concept of a 3D streamlet object, which groups consecutive time step streamlets as a primitive rendering object, is introduced as part of a method for animating streamlets so that they have minimal overlap and show frame-to-frame coherence providing visual continuity when animating time varying vector fields. Acceptance schemes that allow for occasional overlap between streamlets are explored and found to improve both the speed and the overall quality. Both model data and real weather data are used to evaluate the method. The results show that the method produces good results and is flexible, allows for variable size and density of streamlets, and produces good results

    Master of Science

    Get PDF
    thesisIt is common to extract isosurfaces from simulation eld data to visualize and gain understanding of the underlying physical phenomenon being simulated. As the input parameters of the simulation change, the resulting isosurface varies, and there has been increased interest in quantifying and visualization of these variations as part of the larger interest in uncertainty quantification. In this thesis, we propose an analysis and visualization pipeline for examining the intrinsic variation in isosurfaces caused by simulation parameter perturbation. Drawing inspiration from the shape modeling community, we incorporate the use of heat-kernel signatures (HKS) with a simple nite-difference approach for quantifying the degree to which a region (or even a point) on an isosurface has undergone intrinsic change. Coupled with a clustering technique and the use of color maps, our pipeline allows the user to select the level of fidelity with which they wish to evaluate and visualize the amount of intrinsic change. The pipeline is described with a simple example to walk the reader through the different steps, and experimental validation of parameter choices in the pipeline is provided to justify our design. Then we present canonical and simulation examples to demonstrate the pipeline's use in different applications

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    A New Approach for Realistic 3D Reconstruction of Planar Surfaces from Laser Scanning Data and Imagery Collected Onboard Modern Low-Cost Aerial Mapping Systems

    Get PDF
    Over the past few years, accurate 3D surface reconstruction using remotely-sensed data has been recognized as a prerequisite for different mapping, modelling, and monitoring applications. To fulfill the needs of these applications, necessary data are generally collected using various digital imaging systems. Among them, laser scanners have been acknowledged as a fast, accurate, and flexible technology for the acquisition of high density 3D spatial data. Despite their quick accessibility, the acquired 3D data using these systems does not provide semantic information about the nature of scanned surfaces. Hence, reliable processing techniques are employed to extract the required information for 3D surface reconstruction. Moreover, the extracted information from laser scanning data cannot be effectively utilized due to the lack of descriptive details. In order to provide a more realistic and accurate perception of the scanned scenes using laser scanning systems, a new approach for 3D reconstruction of planar surfaces is introduced in this paper. This approach aims to improve the interpretability of the extracted planar surfaces from laser scanning data using spectral information from overlapping imagery collected onboard modern low-cost aerial mapping systems, which are widely adopted nowadays. In this approach, the scanned planar surfaces using laser scanning systems are initially extracted through a novel segmentation procedure, and then textured using the acquired overlapping imagery. The implemented texturing technique, which intends to overcome the computational inefficiency of the previously-developed 3D reconstruction techniques, is performed in three steps. In the first step, the visibility of the extracted planar surfaces from laser scanning data within the collected images is investigated and a list of appropriate images for texturing each surface is established. Successively, an occlusion detection procedure is carried out to identify the occluded parts of these surfaces in the field of view of captured images. In the second step, visible/non-occluded parts of the planar surfaces are decomposed into segments that will be textured using individual images. Finally, a rendering procedure is accomplished to texture these parts using available images. Experimental results from overlapping laser scanning data and imagery collected onboard aerial mapping systems verify the feasibility of the proposed approach for efficient realistic 3D surface reconstruction

    Lighting in the third dimension : laser scanning as an architectural survey and representation method

    Get PDF
    This paper proposes tridimensional (3D) laser scanning to architects and lighting designers as a lighting enquiry and visualization method for existing built environments. The method constitutes a complement to existing lighting methods by responding to limitations of photometric measurements, computer simulation and HDR imagery in surveying and visualizing light in actual buildings. The research explores advantages and limitations of 3D laser scanning in a case study addressing a vast, geometrically complex and fragmented naturally and artificially lit space. Lighting patterns and geometry of the case study are captured with a 3D laser scanner through a series of four scans. A single 3D model of the entire space is produced from the aligned and fused scans. Lighting distribution patterns are showcased in relation to the materiality, geometry and position of windows, walls, lighting fixtures and day lighting sources. Results and presented through images similar to architectural presentation drawings. More specifically, the lighting distribution patterns are illustrated in a floor plan, a reflected ceiling plan, an axonometry and a cross-section. The point cloud model of the case study is also generated into a video format representing the entire building as well as different viewpoints. The study shows that the proposed method provides powerful visualization results due to the unlimited number of images that can be generated from a point cloud and facilitates understanding of existing lighting conditions in spaces

    Longitudinal visualization for exploratory analysis of multiple sclerosis lesions

    Get PDF
    In multiple sclerosis (MS), the amount of brain damage, anatomical location, shape, and changes are important aspects that help medical researchers and clinicians to understand the temporal patterns of the disease. Interactive visualization for longitudinal MS data can support studies aimed at exploratory analysis of lesion and healthy tissue topology. Existing visualizations in this context comprise bar charts and summary measures, such as absolute numbers and volumes to summarize lesion trajectories over time, as well as summary measures such as volume changes. These techniques can work well for datasets having dual time point comparisons. For frequent follow-up scans, understanding patterns from multimodal data is difficult without suitable visualization approaches. As a solution, we propose a visualization application, wherein we present lesion exploration tools through interactive visualizations that are suitable for large time-series data. In addition to various volumetric and temporal exploration facilities, we include an interactive stacked area graph with other integrated features that enable comparison of lesion features, such as intensity or volume change. We derive the input data for the longitudinal visualizations from automated lesion tracking. For cases with a larger number of follow-ups, our visualization design can provide useful summary information while allowing medical researchers and clinicians to study features at lower granularities. We demonstrate the utility of our visualization on simulated datasets through an evaluation with domain experts.publishedVersio
    • …
    corecore