12,749 research outputs found

    Wildbook: Crowdsourcing, computer vision, and data science for conservation

    Full text link
    Photographs, taken by field scientists, tourists, automated cameras, and incidental photographers, are the most abundant source of data on wildlife today. Wildbook is an autonomous computational system that starts from massive collections of images and, by detecting various species of animals and identifying individuals, combined with sophisticated data management, turns them into high resolution information database, enabling scientific inquiry, conservation, and citizen science. We have built Wildbooks for whales (flukebook.org), sharks (whaleshark.org), two species of zebras (Grevy's and plains), and several others. In January 2016, Wildbook enabled the first ever full species (the endangered Grevy's zebra) census using photographs taken by ordinary citizens in Kenya. The resulting numbers are now the official species census used by IUCN Red List: http://www.iucnredlist.org/details/7950/0. In 2016, Wildbook partnered up with WWF to build Wildbook for Sea Turtles, Internet of Turtles (IoT), as well as systems for seals and lynx. Most recently, we have demonstrated that we can now use publicly available social media images to count and track wild animals. In this paper we present and discuss both the impact and challenges that the use of crowdsourced images can have on wildlife conservation.Comment: Presented at the Data For Good Exchange 201

    Fine-grained traffic state estimation and visualisation

    No full text
    Tools for visualising the current traffic state are used by local authorities for strategic monitoring of the traffic network and by everyday users for planning their journey. Popular visualisations include those provided by Google Maps and by Inrix. Both employ a traffic lights colour-coding system, where roads on a map are coloured green if traffic is flowing normally and red or black if there is congestion. New sensor technology, especially from wireless sources, is allowing resolution down to lane level. A case study is reported in which a traffic micro-simulation test bed is used to generate high-resolution estimates. An interactive visualisation of the fine-grained traffic state is presented. The visualisation is demonstrated using Google Earth and affords the user a detailed three-dimensional view of the traffic state down to lane level in real time

    Estimating snow cover from publicly available images

    Get PDF
    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to such sources, addressing the specific challenges posed by each of them, e.g., identifying the mountain peaks, filtering out images taken in bad weather conditions, handling varying illumination conditions. The final outcome is summarized in a snow cover index, which indicates for a specific mountain and day of the year, the fraction of visible area covered by snow, possibly at different elevations. We created a manually labelled dataset to assess the accuracy of the image snow covered area estimation, achieving 90.0% precision at 91.1% recall. In addition, we show that seasonal trends related to air temperature are captured by the snow cover index.Comment: submitted to IEEE Transactions on Multimedi

    Where was that photo taken? : deriving geographical information from image collections based on temporal exposure attributes

    Get PDF
    This paper demonstrates a novel strategy for inferring approximate geographical information from the exposure information and temporal patterns of outdoor images in image collections. Image exposure is reliant on light and most photographs are therefore taken in daylight which again depends on the position of the sun. Clearly, the sun results in different lighting conditions at different geographical location and at different times of the day, and hence the observed intensity patterns can be used to deduce the approximate location of the photographer at the time the photographs were taken. Images taken inside or at night are temporally connected to the daylight images and the geographical information can therefore be transferred to related ‘‘dark’’ photographs. The strategy is efficient as it only considers meta information and not image contents. Large databases can therefore be indexed efficiently. Experimental results demonstrate that the current approach yields a longitudinal error of 15.7 and a latitudinal error of 30.5 for authentic image collections comprising a mixture of outdoor and indoor images. The strategy determined the correct hemisphere in all the tests. Although not as accurate as GPS receiver, the geographical information is sufficiently detailed to be useful. Applications include improved image retrieval, image browsing and automatic image tagging. The strategy does not require a GPS receiver and can be applied to the existing digital image collections

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    A Simple Content-based Strategy for Estimating the Geographical Location of a Webcam

    Get PDF
    This study proposes a strategy for determining the approximate geographical location of a webcam based on a sequence of images taken at regular intervals. For a time-stamped image sequence spanning 24 hours the approximate sunrise and sunset times are determined by classifying images into day and nighttime images based on the image intensity. Based on the sunrise and sunset times both the latitude and longitude of the webcam can be determined. Experimental data demonstrates the effectiveness of the strategy

    eStorys: A visual storyboard system supporting back-channel communication for emergencies

    Get PDF
    This is the post-print version of the final paper published in Journal of Visual Languages & Computing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper we present a new web mashup system for helping people and professionals to retrieve information about emergencies and disasters. Today, the use of the web during emergencies, is confirmed by the employment of systems like Flickr, Twitter or Facebook as demonstrated in the cases of Hurricane Katrina, the July 7, 2005 London bombings, and the April 16, 2007 shootings at Virginia Polytechnic University. Many pieces of information are currently available on the web that can be useful for emergency purposes and range from messages on forums and blogs to georeferenced photos. We present here a system that, by mixing information available on the web, is able to help both people and emergency professionals in rapidly obtaining data on emergency situations by using multiple web channels. In this paper we introduce a visual system, providing a combination of tools that demonstrated to be effective in such emergency situations, such as spatio/temporal search features, recommendation and filtering tools, and storyboards. We demonstrated the efficacy of our system by means of an analytic evaluation (comparing it with others available on the web), an usability evaluation made by expert users (students adequately trained) and an experimental evaluation with 34 participants.Spanish Ministry of Science and Innovation and Universidad Carlos III de Madrid and Banco Santander
    • …
    corecore