97 research outputs found

    Learning Opposites with Evolving Rules

    Full text link
    The idea of opposition-based learning was introduced 10 years ago. Since then a noteworthy group of researchers has used some notions of oppositeness to improve existing optimization and learning algorithms. Among others, evolutionary algorithms, reinforcement agents, and neural networks have been reportedly extended into their opposition-based version to become faster and/or more accurate. However, most works still use a simple notion of opposites, namely linear (or type- I) opposition, that for each x[a,b]x\in[a,b] assigns its opposite as x˘I=a+bx\breve{x}_I=a+b-x. This, of course, is a very naive estimate of the actual or true (non-linear) opposite x˘II\breve{x}_{II}, which has been called type-II opposite in literature. In absence of any knowledge about a function y=f(x)y=f(\mathbf{x}) that we need to approximate, there seems to be no alternative to the naivety of type-I opposition if one intents to utilize oppositional concepts. But the question is if we can receive some level of accuracy increase and time savings by using the naive opposite estimate x˘I\breve{x}_I according to all reports in literature, what would we be able to gain, in terms of even higher accuracies and more reduction in computational complexity, if we would generate and employ true opposites? This work introduces an approach to approximate type-II opposites using evolving fuzzy rules when we first perform opposition mining. We show with multiple examples that learning true opposites is possible when we mine the opposites from the training data to subsequently approximate x˘II=f(x,y)\breve{x}_{II}=f(\mathbf{x},y).Comment: Accepted for publication in The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke

    Opposition-Based Differential Evolution

    Get PDF
    Evolutionary algorithms (EAs) are well-established techniques to approach those problems which for the classical optimization methods are difficult to solve. Tackling problems with mixed-type of variables, many local optima, undifferentiable or non-analytical functions are some examples to highlight the outstanding capabilities of the evolutionary algorithms. Among the various kinds of evolutionary algorithms, differential evolution (DE) is well known for its effectiveness and robustness. Many comparative studies confirm that the DE outperforms many other optimizers. Finding more accurate solution(s), in a shorter period of time for complex black-box problems, is still the main goal of all evolutionary algorithms. The opposition concept, on the other hand, has a very old history in philosophy, set theory, politics, sociology, and physics. But, there has not been any opposition-based contribution to optimization. In this thesis, firstly, the opposition-based optimization (OBO) is constituted. Secondly, its advantages are formally supported by establishing mathematical proofs. Thirdly, the opposition-based acceleration schemes, including opposition-based population initialization and generation jumping, are proposed. Fourthly, DE is selected as a parent algorithm to verify the acceleration effects of proposed schemes. Finally, a comprehensive set of well-known complex benchmark functions is employed to experimentally compare and analyze the algorithms. Results confirm that opposition-based DE (ODE) performs better than its parent (DE), in terms of both convergence speed and solution quality. The main claim of this thesis is not defeating DE, its numerous versions, or other optimizers, but to introduce a new notion into nonlinear continuous optimization via innovative metaheuristics, namely the notion of opposition. Although, ODE has been compared with six other optimizers and outperforms them overall. Furthermore, both presented experimental and mathematical results conform with each other and demonstrate that opposite points are more beneficial than pure random points for black-box problems; this fundamental knowledge can serve to accelerate other machine learning approaches as well (such as reinforcement learning and neural networks). And perhaps in future, it could replace the pure randomness with random-opposition model when there is no a priori knowledge about the solution/problem. Although, all conducted experiments utilize DE as a parent algorithm, the proposed schemes are defined at the population level and, hence, have an inherent potential to be utilized for acceleration of other DE extensions or even other population-based algorithms, such as genetic algorithms (GAs). Like many other newly introduced concepts, ODE and the proposed opposition-based schemes still require further studies to fully unravel their benefits, weaknesses, and limitations

    Self-Configuring and Evolving Fuzzy Image Thresholding

    Full text link
    Every segmentation algorithm has parameters that need to be adjusted in order to achieve good results. Evolving fuzzy systems for adjustment of segmentation parameters have been proposed recently (Evolving fuzzy image segmentation -- EFIS [1]. However, similar to any other algorithm, EFIS too suffers from a few limitations when used in practice. As a major drawback, EFIS depends on detection of the object of interest for feature calculation, a task that is highly application-dependent. In this paper, a new version of EFIS is proposed to overcome these limitations. The new EFIS, called self-configuring EFIS (SC-EFIS), uses available training data to auto-configure the parameters that are fixed in EFIS. As well, the proposed SC-EFIS relies on a feature selection process that does not require the detection of a region of interest (ROI).Comment: To appear in proceedings of The 14th International Conference on Machine Learning and Applications (IEEE ICMLA 2015), Miami, Florida, USA, 201

    Medical Image Classification via SVM using LBP Features from Saliency-Based Folded Data

    Full text link
    Good results on image classification and retrieval using support vector machines (SVM) with local binary patterns (LBPs) as features have been extensively reported in the literature where an entire image is retrieved or classified. In contrast, in medical imaging, not all parts of the image may be equally significant or relevant to the image retrieval application at hand. For instance, in lung x-ray image, the lung region may contain a tumour, hence being highly significant whereas the surrounding area does not contain significant information from medical diagnosis perspective. In this paper, we propose to detect salient regions of images during training and fold the data to reduce the effect of irrelevant regions. As a result, smaller image areas will be used for LBP features calculation and consequently classification by SVM. We use IRMA 2009 dataset with 14,410 x-ray images to verify the performance of the proposed approach. The results demonstrate the benefits of saliency-based folding approach that delivers comparable classification accuracies with state-of-the-art but exhibits lower computational cost and storage requirements, factors highly important for big data analytics.Comment: To appear in proceedings of The 14th International Conference on Machine Learning and Applications (IEEE ICMLA 2015), Miami, Florida, USA, 201

    Autoencoding the Retrieval Relevance of Medical Images

    Full text link
    Content-based image retrieval (CBIR) of medical images is a crucial task that can contribute to a more reliable diagnosis if applied to big data. Recent advances in feature extraction and classification have enormously improved CBIR results for digital images. However, considering the increasing accessibility of big data in medical imaging, we are still in need of reducing both memory requirements and computational expenses of image retrieval systems. This work proposes to exclude the features of image blocks that exhibit a low encoding error when learned by a n/p/nn/p/n autoencoder (p ⁣< ⁣np\!<\!n). We examine the histogram of autoendcoding errors of image blocks for each image class to facilitate the decision which image regions, or roughly what percentage of an image perhaps, shall be declared relevant for the retrieval task. This leads to reduction of feature dimensionality and speeds up the retrieval process. To validate the proposed scheme, we employ local binary patterns (LBP) and support vector machines (SVM) which are both well-established approaches in CBIR research community. As well, we use IRMA dataset with 14,410 x-ray images as test data. The results show that the dimensionality of annotated feature vectors can be reduced by up to 50% resulting in speedups greater than 27% at expense of less than 1% decrease in the accuracy of retrieval when validating the precision and recall of the top 20 hits.Comment: To appear in proceedings of The 5th International Conference on Image Processing Theory, Tools and Applications (IPTA'15), Nov 10-13, 2015, Orleans, Franc

    Micro-differential evolution: diversity enhancement and comparative study.

    Get PDF
    Evolutionary algorithms (EAs), such as the differential evolution (DE) algorithm, suffer from high computational time due to large population size and nature of evaluation, to mention two major reasons. The micro-EAs employ a very small population size, which can converge to a reasonable solution quicker; while they are vulnerable to premature convergence as well as high risk of stagnation. One approach to overcome the stagnation problem is increasing the diversity of the population. In this thesis, a micro-differential evolution algorithm with vectorized random mutation factor (MDEVM) is proposed, which utilizes the small size population benefit while preventing stagnation through diversification of the population. The following contributions are conducted related to the micro-DE (MDE) algorithms in this thesis: providing Monte-Carlo-based simulations for the proposed vectorized random mutation factor (VRMF) method; proposing mutation schemes for DE algorithm with populations sizes less than four; comprehensive comparative simulations and analysis on performance of the MDE algorithms over variant mutation schemes, population sizes, problem types (i.e. uni-modal, multi-modal, and composite), problem dimensionalities, mutation factor ranges, and population diversity analysis in stagnation and trapping in local optimum schemes. The comparative studies are conducted on the 28 benchmark functions provided at the IEEE congress on evolutionary computation 2013 (CEC-2013) and comprehensive analyses are provided. Experimental results demonstrate high performance and convergence speed of the proposed MDEVM algorithm over variant types of functions
    corecore