9,997 research outputs found

    Spatially Aware Dictionary Learning and Coding for Fossil Pollen Identification

    Full text link
    We propose a robust approach for performing automatic species-level recognition of fossil pollen grains in microscopy images that exploits both global shape and local texture characteristics in a patch-based matching methodology. We introduce a novel criteria for selecting meaningful and discriminative exemplar patches. We optimize this function during training using a greedy submodular function optimization framework that gives a near-optimal solution with bounded approximation error. We use these selected exemplars as a dictionary basis and propose a spatially-aware sparse coding method to match testing images for identification while maintaining global shape correspondence. To accelerate the coding process for fast matching, we introduce a relaxed form that uses spatially-aware soft-thresholding during coding. Finally, we carry out an experimental study that demonstrates the effectiveness and efficiency of our exemplar selection and classification mechanisms, achieving 86.13%86.13\% accuracy on a difficult fine-grained species classification task distinguishing three types of fossil spruce pollen.Comment: CVMI 201

    Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification

    Full text link
    This paper considers the domain adaptive person re-identification (re-ID) problem: learning a re-ID model from a labeled source domain and an unlabeled target domain. Conventional methods are mainly to reduce feature distribution gap between the source and target domains. However, these studies largely neglect the intra-domain variations in the target domain, which contain critical factors influencing the testing performance on the target domain. In this work, we comprehensively investigate into the intra-domain variations of the target domain and propose to generalize the re-ID model w.r.t three types of the underlying invariance, i.e., exemplar-invariance, camera-invariance and neighborhood-invariance. To achieve this goal, an exemplar memory is introduced to store features of the target domain and accommodate the three invariance properties. The memory allows us to enforce the invariance constraints over global training batch without significantly increasing computation cost. Experiment demonstrates that the three invariance properties and the proposed memory are indispensable towards an effective domain adaptation system. Results on three re-ID domains show that our domain adaptation accuracy outperforms the state of the art by a large margin. Code is available at: https://github.com/zhunzhong07/ECNComment: To appear in CVPR 201

    KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Full text link
    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained dictionary (LCD) for KCRC. In addition, we discuss several similarity measure approaches in LCD and further present a simple yet effective unified similarity measure whose superiority is validated in experiments. There are several appealing aspects associated with LCD. First, LCD can be nicely incorporated under the framework of KCRC. The LCD similarity measure can be kernelized under KCRC, which theoretically links CRC and LCD under the kernel method. Second, KCRC-LCD becomes more scalable to both the training set size and the feature dimension. Example shows that KCRC is able to perfectly classify data with certain distribution, while conventional CRC fails completely. Comprehensive experiments on many public datasets also show that KCRC-LCD is a robust discriminative classifier with both excellent performance and good scalability, being comparable or outperforming many other state-of-the-art approaches

    Probabilistic Memory Model for Visual Images Categorization

    Get PDF
    During the past decades, numerous memory models have been proposed, which focused mainly on how spoken words are studied, whereas models on how visual images are studied are still limited. In this study, we propose a probabilistic memory model (PMM) for visual images categorization which is able to mimic the workings of the human brain during the image storage and retrieval. First, in the learning phase, the visual images are represented by the feature vectors extracted with convolutional neural network (CNN) and each feature component is assumed to conform to a Gaussian distribution and may be incompletely copied with a certain probability or randomly produced in accordance to an exponential distribution. Then, in the test phase, the likelihood ratio between the test image and each studied image is calculated based on the probabilistic inference theory, and an odd value in favor of an old item over a new one is obtained based on all likelihood values. Finally, if the odd value is above a certain threshold, the Bayesian decision rule is applied for image classification. Experimental results on two benchmark image datasets demonstrate that the proposed PMM can perform well on categorization tasks for both studied and non-studied images

    Deep Graph Laplacian Regularization for Robust Denoising of Real Images

    Full text link
    Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin
    • …
    corecore