189 research outputs found

    CTex - an adaptive unsupervised segmentation algorithm based on color-texture coherence

    Get PDF
    This paper presents the development of an unsupervised image segmentation framework (referred to as CTex) that is based on the adaptive inclusion of color and texture in the process of data partition. An important contribution of this work consists of a new formulation for the extraction of color features that evaluates the input image in a multispace color representation. To achieve this, we have used the opponent characteristics of the RGB and YIQ color spaces where the key component was the inclusion of the self organizing map (SOM) network in the computation of the dominant colors and estimation of the optimal number of clusters in the image. The texture features are computed using a multichannel texture decomposition scheme based on Gabor filtering. The major contribution of this work resides in the adaptive integration of the color and texture features in a compound mathematical descriptor with the aim of identifying the homogenous regions in the image. This integration is performed by a novel adaptive clustering algorithm that enforces the spatial continuity during the data assignment process. A comprehensive qualitative and quantitative performance evaluation has been carried out and the experimental results indicate that the proposed technique is accurate in capturing the color and texture characteristics when applied to complex natural images

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Color image segmentation using multispectral random field texture model & color content features

    Get PDF
    This paper describes a color texture-based image segmentation system. The color texture information is obtained via modeling with the Multispectral Simultaneous Auto Regressive (MSAR) random field model. The general color content characterized by ratios of sample color means is also used. The image is segmented into regions of uniform color texture using an unsupervised histogram clustering approach that utilizes the combination of MSAR and color features. The performance of the system is tested on two databases containing synthetic mosaics of natural textures and natural scenes, respectivelyFacultad de Informátic

    Modified JSEG algorithm for reducing over-segmentation problems in underwater coral reef images

    Get PDF
    The original JSEG algorithm has proved to be very useful and robust in variety of image segmentation case studies.However, when it is applied into the underwater coral reef images, the original JSEG algorithm produces over-segementation problem, thus making this algorithm futile in such a situation. In this paper, an approach to reduce the over-segmentation problem occurred in the underwater coral reef image segmentation is presented. The approach works by replacing the color histogram computation in region merge stage of the original JSEG algorithm with the new computation of color and texture features in the similarity measurement. Based on the perceptual observation results of the test images, the proposed modified JSEG algorithm could automatically segment the regions better than the original JSEG algorithm

    Unsupervised segmentation of natural images based on the adaptive integration of colour-texture descriptors

    Get PDF

    A Novel Approach for Quaternion Algebra Based JSEG Color Texture Segmentation

    Get PDF
    In this work, a novel colour quantization approach has been applied to the JSEG colour texture segmentation using quaternion algebra. As a rule, the fundamental vectors of the colour space are derived by inverting the three RGB colour directions in the complex hyperplanes. In the proposed system, colour is represented as a quaternion because quaternion algebra provides a very intuitive means of working with homogeneous coordinates. This representation views a colour pixel as a point in the three-dimensional space. A novel quantization approach that makes use of projective geometry and level set methods has been produced as a consequence of the suggested model. The JSEG colour texture segmentation will use this technique. The new colour quantization approach utilises the binary quaternion moment preserving thresholding methodology, and is therefore a splintering clustering method. This method is used to segment the colour clusters found inside the RGB cube and the colour consistency throughout the spectrum and in the space are both considered. The results of the segmentation are compared with JSEG as well as with the most recent standard segmentation techniques. These comparisons show that the suggested quantization technique makes JSEG segmentation more robust

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Fast unsupervised multiresolution color image segmentation using adaptive gradient thresholding and progressive region growing

    Get PDF
    In this thesis, we propose a fast unsupervised multiresolution color image segmentation algorithm which takes advantage of gradient information in an adaptive and progressive framework. This gradient-based segmentation method is initialized by a vector gradient calculation on the full resolution input image in the CIE L*a*b* color space. The resultant edge map is used to adaptively generate thresholds for classifying regions of varying gradient densities at different levels of the input image pyramid, obtained through a dyadic wavelet decomposition scheme. At each level, the classification obtained by a progressively thresholded growth procedure is combined with an entropy-based texture model in a statistical merging procedure to obtain an interim segmentation. Utilizing an association of a gradient quantized confidence map and non-linear spatial filtering techniques, regions of high confidence are passed from one level to another until the full resolution segmentation is achieved. Evaluation of our results on several hundred images using the Normalized Probabilistic Rand (NPR) Index shows that our algorithm outperforms state-of the art segmentation techniques and is much more computationally efficient than its single scale counterpart, with comparable segmentation quality
    corecore