2,918 research outputs found

    Continuous Multiclass Labeling Approaches and Algorithms

    Get PDF
    We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity -- one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for nonstandard potentials, we were able to routinely recover discrete solutions within 1%--5% of the global optimum for the combinatorial image labeling problem

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    An iterative image segmentation algorithm utilizing spatial information

    Get PDF
    An iterative image segmentation algorithm that segments an image on a pixel-by-pixel basis is described. The observation information to be utilized is the joint gray level values of the pixel to be segmented and those of its neighborhood pixels. The iterative process is initialized by thresholding the image with Otsu's (1979) method. Each pixel is segmented into a class when the a posteriori probability, conditioned on the observation information, that it belongs to this class is a maximum. The newly segmented image is employed to re-estimate the a posteriori probabilities and the segmentation process is repeated until there is no further pixel classification change in a particular run. Among those segmented images generated in the iterative process, the best segmented image is chosen, according to a maximum entropy criterion. Simulation studies demonstrate that the proposed algorithm can achieve very significant improvement in segmentation performance as compared to the more popular thresholds approach. Furthermore, the performance is neither sensitive to the initial threshold value nor the form of the probability density function of the image. Segmentation of practical images also demonstrates that the proposed algorithm is capable of good segmentation results for real-life images.published_or_final_versio

    Low complexity object detection with background subtraction for intelligent remote monitoring

    Get PDF

    Image Segmentation Using Marker-Controlled Watershed Transformation and Morphology

    Get PDF
    The watershed segmentation methods are essential methods, to be considered for quick results in image handling and analysis. However, the main problem arises in produced image because it causes excess segmentation and noise. This research is conducted to improve this presented algorithm based on the mathematical morphology and filters to minimize flaws mentioned in that paper. Objective of this research is to find the gaps in the existing literary works. In most cases, themarker based segmentation is best because it marks the part of segment. The working of this proposed algorithm is checked by optimization of the part that is still an area of research

    A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging

    Full text link
    corecore