3,714 research outputs found

    BASED ON RANGE AND DOMAIN FRACTAL IMAGE COMPRESSION OF SATELLITE IMAGERIES IMPROVED ALGORITHM FOR RESEARCH

    Get PDF
    Fractal coding is a novel method to compress images, which was proposed by Barnsley, and implemented by Jacquin. It offers many advantages. Fractal image coding has the advantage of higher compression ratio, but is a lossy compression scheme. The encoding procedure consists of dividing the image into range blocks and domain blocks and then it takes a range block and matches it with the domain block. The image is encoded by partitioning the domain block and using affine transformation to achieve fractal compression. The image is reconstructed using iterative functions and inverse transforms. However, the encoding time of traditional fractal compression technique is too long to achieve real-time image compression, so it cannot be widely used. Based on the theory of fractal image compression; this paper raised an improved algorithm form the aspect of image segmentation. In the present work the fractal coding techniques are applied for the compression of satellite imageries. The Peak Signal to Noise Ratio (PSNR) values are determined for images namely Satellite Rural image and Satellite Urban image. The Matlab simulation results for the reconstructed image shows that PSNR values achievable for Satellite Rural image ~33 and for Satellite urban image ~42

    Face Recognition Using Fractal Codes

    Get PDF
    In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the imag

    Multi-texture image segmentation

    Get PDF
    Visual perception of images is closely related to the recognition of the different texture areas within an image. Identifying the boundaries of these regions is an important step in image analysis and image understanding. This thesis presents supervised and unsupervised methods which allow an efficient segmentation of the texture regions within multi-texture images. The features used by the methods are based on a measure of the fractal dimension of surfaces in several directions, which allows the transformation of the image into a set of feature images, however no direct measurement of the fractal dimension is made. Using this set of features, supervised and unsupervised, statistical processing schemes are presented which produce low classification error rates. Natural texture images are examined with particular application to the analysis of sonar images of the seabed. A number of processes based on fractal models for texture synthesis are also presented. These are used to produce realistic images of natural textures, again with particular reference to sonar images of the seabed, and which show the importance of phase and directionality in our perception of texture. A further extension is shown to give possible uses for image coding and object identification

    Fast Search Approaches for Fractal Image Coding: Review of Contemporary Literature

    Get PDF
    Fractal Image Compression FIC as a model was conceptualized in the 1989 In furtherance there are numerous models that has been developed in the process Existence of fractals were initially observed and depicted in the Iterated Function System IFS and the IFS solutions were used for encoding images The process of IFS pertaining to any image constitutes much lesser space for recording than the actual image which has led to the development of representation the image using IFS form and how the image compression systems has taken shape It is very important that the time consumed for encoding has to be addressed for achieving optimal compression conditions and predominantly the inputs that are shared in the solutions proposed in the study depict the fact that despite of certain developments that has taken place still there are potential chances of scope for improvement From the review of exhaustive range of models that are depicted in the model it is evident that over period of time numerous advancements have taken place in the FCI model and is adapted at image compression in varied levels This study focus on the existing range of literature on FCI and the insights of various models has been depicted in this stud

    Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification

    Get PDF
    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE Trans Med Imag; added copyright notic
    corecore