3,625 research outputs found

    Hyperspectral images segmentation: a proposal

    Get PDF
    Hyper-Spectral Imaging (HIS) also known as chemical or spectroscopic imaging is an emerging technique that combines imaging and spectroscopy to capture both spectral and spatial information from an object. Hyperspectral images are made up of contiguous wavebands in a given spectral band. These images provide information on the chemical make-up profile of objects, thus allowing the differentiation of objects of the same colour but which possess make-up profile. Yet, whatever the application field, most of the methods devoted to HIS processing conduct data analysis without taking into account spatial information.Pixels are processed individually, as an array of spectral data without any spatial structure. Standard classification approaches are thus widely used (k-means, fuzzy-c-means hierarchical classification...). Linear modelling methods such as Partial Least Square analysis (PLS) or non linear approaches like support vector machine (SVM) are also used at different scales (remote sensing or laboratory applications). However, with the development of high resolution sensors, coupled exploitation of spectral and spatial information to process complex images, would appear to be a very relevant approach. However, few methods are proposed in the litterature. The most recent approaches can be broadly classified in two main categories. The first ones are related to a direct extension of individual pixel classification methods using just the spectral dimension (k-means, fuzzy-c-means or FCM, Support Vector Machine or SVM). Spatial dimension is integrated as an additionnal classification parameter (Markov fields with local homogeneity constrainst [5], Support Vector Machine or SVM with spectral and spatial kernels combination [2], geometrically guided fuzzy C-means [3]...). The second ones combine the two fields related to each dimension (spectral and spatial), namely chemometric and image analysis. Various strategies have been attempted. The first one is to rely on chemometrics methods (Principal Component Analysis or PCA, Independant Component Analysis or ICA, Curvilinear Component Analysis...) to reduce the spectral dimension and then to apply standard images processing technics on the resulting score images i.e. data projection on a subspace. Another approach is to extend the definition of basic image processing operators to this new dimensionality (morphological operators for example [1, 4]). However, the approaches mentioned above tend to favour only one description either directly or indirectly (spectral or spatial). The purpose of this paper is to propose a hyperspectral processing approach that strikes a better balance in the treatment of both kinds of information....Cet article présente une stratégie de segmentation d’images hyperspectrales liant de façon symétrique et conjointe les aspects spectraux et spatiaux. Pour cela, nous proposons de construire des variables latentes permettant de définir un sous-espace représentant au mieux la topologie de l’image. Dans cet article, nous limiterons cette notion de topologie à la seule appartenance aux régions. Pour ce faire, nous utilisons d’une part les notions de l’analyse discriminante (variance intra, inter) et les propriétés des algorithmes de segmentation en région liées à celles-ci. Le principe générique théorique est exposé puis décliné sous la forme d’un exemple d’implémentation optimisé utilisant un algorithme de segmentation en région type split and merge. Les résultats obtenus sur une image de synthèse puis réelle sont exposés et commentés

    Master of Science

    Get PDF
    thesisAnalysis and visualization of flow is an important part of many scientific endeavors. Computation of streamlines is fundamental to many of these analysis and visualization tasks. A streamline is the path a massless particle traces under the instantenous velocities of a given vector field. Flow data are often stored as a sampled vector field over a mesh. We propose a new representation of flow defined by such a vector field. Given a triangulation and a vector field defined over its vertices, we represent flow in the form of its transversal behavior over the edges of the triangulation. A streamline is represented as a set of discrete jumps over these edges. Any information about the actual path taken through the interior of the triangles is discarded. We eliminate the necessity to compute actual paths of streamlines through the interior of each triangle while maintaining the aggregate behavior of flow within each of them. We discretize each edge uniformly into a fixed number of bins and use this discretization to form a combinatorial representation of flow in the form of a directed graph whose nodes are the set of all bins and its edges represent the discrete jumps between these bins. This representation is a combinatorial structure that provides robustness and consistency in expressing flow features like the critical points, streamlines, separatrices and closed streamlines which are otherwise hard to compute consistently

    APPLICATION OF IMAGE ANALYSIS TECHNIQUES TO SATELLITE CLOUD MOTION TRACKING

    Get PDF
    Cloud motion wind (CMW) determination requires tracking of individual cloud targets. This is achieved by first clustering and then tracking each cloud cluster. Ideally, different cloud clusters correspond to diiferent pressure levels. Two new clustering techniques have been developed for the identification of cloud types in multi-spectral satellite imagery. The first technique is the Global-Local clustering algorithm. It is a cascade of a histogram clustering algorithm and a dynamic clustering algorithm. The histogram clustering algorithm divides the multi-spectral histogram into'non-overlapped regions, and these regions are used to initialise the dynamic clustering algorithm. The dynamic clustering algorithm assumes clusters have a Gaussian distributed probability density function with diiferent population size and variance. The second technique uses graph theory to exploit the spatial information which is often ignored in per-pixel clustering. The algorithm is in two stages: spatial clustering and spectral clustering. The first stage extracts homogeneous objects in the image using a family of algorithms based on stepwise optimization. This family of algorithms can be further divided into two approaches: Top-down and Bottom-up. The second stage groups similar segments into clusters using a statistical hypothesis test on their similarities. The clusters generated are less noisy along class boundaries and are in hierarchical order. A criterion based on mutual information is derived to monitor the spatial clustering process and to suggest an optimal number of segments. An automated cloud motion tracking program has been developed. Three images (each separated by 30 minutes) are used to track cloud motion and the middle image is clustered using Global-Local clustering prior to tracking. Compared with traditional methods based on raw images, it is found that separation of cloud types before cloud tracking can reduce the ambiguity due to multi-layers of cloud moving at different speeds and direction. Three matching techniques are used and their reliability compared. Target sizes ranging from 4 x 4 to 32 x 32 are tested and their errors compared. The optimum target size for first generation METEOSAT images has also been found.Meteorological Office, Bracknel

    Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication

    Full text link
    Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdos-Renyi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first ever implementation of the 3D SpGEMM formulation that also exploits multiple (intra-node and inter-node) levels of parallelism, achieving significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research

    Automatic Main Road Extraction from High Resolution Satellite Imagery

    Get PDF
    Road information is essential for automatic GIS (geographical information system) data acquisition, transportation and urban planning. Automatic road (network) detection from high resolution satellite imagery will hold great potential for significant reduction of database development/updating cost and turnaround time. From so called low level feature detection to high level context supported grouping, so many algorithms and methodologies have been presented for this purpose. There is not any practical system that can fully automatically extract road network from space imagery for the purpose of automatic mapping. This paper presents the methodology of automatic main road detection from high resolution satellite IKONOS imagery. The strategies include multiresolution or image pyramid method, Gaussian blurring and the line finder using 1-dimemsional template correlation filter, line segment grouping and multi-layer result integration. Multi-layer or multi-resolution method for road extraction is a very effective strategy to save processing time and improve robustness. To realize the strategy, the original IKONOS image is compressed into different corresponding image resolution so that an image pyramid is generated; after that the line finder of 1-dimemsional template correlation filter after Gaussian blurring filtering is applied to detect the road centerline. Extracted centerline segments belong to or do not belong to roads. There are two ways to identify the attributes of the segments, the one is using segment grouping to form longer line segments and assign a possibility to the segment depending on the length and other geometric and photometric attribute of the segment, for example the longer segment means bigger possibility of being road. Perceptual-grouping based method is used for road segment linking by a possibility model that takes multi-information into account; here the clues existing in the gaps are considered. Another way to identify the segments is feature detection back-to-higher resolution layer from the image pyramid

    Automated segmentation, detection and fitting of piping elements from terrestrial LIDAR data

    Get PDF
    Since the invention of light detection and ranging (LIDAR) in the early 1960s, it has been adopted for use in numerous applications, from topographical mapping with airborne LIDAR platforms to surveying of urban sites with terrestrial LIDAR systems. Static terrestrial LIDAR has become an especially effective tool for surveying, in some cases replacing traditional techniques such as electronic total stations and GPS methods. Current state-of-the-art LIDAR scanners have very fine spatial resolution, generating precise 3D point cloud data with millimeter accuracy. Therefore, LIDAR data can provide 3D details of a scene with an unprecedented level of details. However, automated exploitation of LIDAR data is challenging, due to the non-uniform spatial sampling of the point clouds as well as to the massive volumes of data, which may range from a few million points to hundreds of millions of points depending on the size and complexity of the scene being scanned. ^ This dissertation focuses on addressing these challenges to automatically exploit large LIDAR point clouds of piping systems in industrial sites, such as chemical plants, oil refineries, and steel mills. A complete processing chain is proposed in this work, using raw LIDAR point clouds as input and generating cylinder parameter estimates for pipe segments as the output, which could then be used to produce computer aided design (CAD) models of pipes. The processing chain consists of three stages: (1) segmentation of LIDAR point clouds, (2) detection and identification of piping elements, and (3) cylinder fitting and parameter estimation. The final output of the cylinder fitting stage gives the estimated orientation, position, and radius of each detected pipe element. ^ A robust octree-based split and merge segmentation algorithm is proposed in this dissertation that can efficiently process LIDAR data. Following octree decomposition of the point cloud, graph theory analysis is used during the splitting process to separate points within each octant into components based on spatial connectivity. A series of connectivity criteria (proximity, orientation, and curvature) are developed for the merging process, which exploits contextual information to effectively merge cylindrical segments into complete pipes and planar segments into complete walls. Furthermore, by conducting surface fitting of segments and analyzing their principal curvatures, the proposed segmentation approach is capable of detecting and identifying the piping segments. ^ A novel cylinder fitting technique is proposed to accurately estimate the cylinder parameters for each detected piping segment from the terrestrial LIDAR point cloud. Specifically, the orientation, radius, and position of each piping element must be robustly estimated in the presence of noise. An original formulation has been developed to estimate the cylinder axis orientation using gradient descent optimization of an angular distance cost function. The cost function is based on the concept that surface normals of points in a cylinder point cloud are perpendicular to the cylinder axis. The key contribution of this algorithm is its capability to accurately estimate the cylinder orientation in the presence of noise without requiring a good initial starting point. After estimation of the cylinder\u27s axis orientation, the radius and position are then estimated in the 2D space formed from the projection of the 3D cylinder point cloud onto the plane perpendicular to the cylinder\u27s axis. With these high quality approximations, a least squares estimation in 3D is made for the final cylinder parameters. ^ Following cylinder fitting, the estimated parameters of each detected piping segment are used to generate a CAD model of the piping system. The algorithms and techniques in this dissertation form a complete processing chain that can automatically exploit large LIDAR point cloud of piping systems and generate CAD models

    Three--dimensional medical imaging: Algorithms and computer systems

    Get PDF
    This paper presents an introduction to the field of three-dimensional medical imaging It presents medical imaging terms and concepts, summarizes the basic operations performed in three-dimensional medical imaging, and describes sample algorithms for accomplishing these operations. The paper contains a synopsis of the architectures and algorithms used in eight machines to render three-dimensional medical images, with particular emphasis paid to their distinctive contributions. It compares the performance of the machines along several dimensions, including image resolution, elapsed time to form an image, imaging algorithms used in the machine, and the degree of parallelism used in the architecture. The paper concludes with general trends for future developments in this field and references on three-dimensional medical imaging
    corecore