4,711 research outputs found

    Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

    Get PDF
    Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have "e;C"e; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the "e;Onion-Peeling"e; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A "e;bad"e; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the "e;C"e; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the "e;Onion-Peeling"e; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images

    Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

    Get PDF
    Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have "e;C"e; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the "e;Onion-Peeling"e; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A "e;bad"e; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the "e;C"e; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the "e;Onion-Peeling"e; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images

    A New Method for Gray Level Image Thresholding Using Spatial Correlation Features and Ultrafuzzy Measure

    Get PDF
    One of the most recent techniques employed to estimate an optimal threshold of a gray level image for segmentation is ultrafuzzy measures. In this paper, we introduce relative fuzzy membership degree (RFMD) taking spatial correlation among the pixels in the image into account. We also propose a novel thresholding technique by combining two-dimensional histogram, which was determined by using the gray value of the pixels and the local average gray value of the pixels using ultrafuzziness and RFMD. Compared to fuzzy membership degree, RFMD of type-II fuzzy sets and ultrafuzzy measure is able to better segment critical gray level images. It was observed that the outcome is so encouraging in objective and subjective perspectives over the existing method for all varieties of images

    Automatic histogram threshold using fuzzy measures

    Get PDF
    In this paper, an automatic histogram threshold approach based on a fuzziness measure is presented. This work is an improvement of an existing method. Using fuzzy logic concepts, the problems involved in finding the minimum of a criterion function are avoided. Similarity between gray levels is the key to find an optimal threshold. Two initial regions of gray levels, located at the boundaries of the histogram, are defined. Then, using an index of fuzziness, a similarity process is started to find the threshold point. A significant contrast between objects and background is assumed. Previous histogram equalization is used in small contrast images. No prior knowledge of the image is required.info:eu-repo/semantics/publishedVersio

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86
    corecore