43,790 research outputs found

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    K-Space at TRECVID 2008

    Get PDF
    In this paper we describe K-Space’s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde and Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    K-Space at TRECVid 2008

    Get PDF
    In this paper we describe K-Space’s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde & Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF
    • …
    corecore