41 research outputs found

    Image registration of ex-vivo MRI to sparsely sectioned histology of hippocampal and neocortical temporal lobe specimens.

    Get PDF
    Intractable or drug-resistant epilepsy occurs in up to 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Recent magnetic resonance imaging (MRI) sequences and analysis techniques have the potential to detect abnormalities not identified with diagnostic MRI protocols. Prospective studies involving pre-operative imaging and collection of surgically-resected tissue provide a unique opportunity for verification and tuning of these image analysis techniques, since direct comparison can be made against histopathology, and can lead to better prediction of surgical outcomes and potentially less invasive procedures. To carry out MRI and histology comparison, spatial correspondence between the MR images and the histology images must be found. Towards this goal, a novel pipeline is presented here for bringing ex-vivo MRI of surgically-resected temporal lobe specimens and digital histology into spatial correspondence. The sparsely-sectioned histology images represent a challenge for 3D reconstruction which we address with a combined 3D and 2D registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We evaluated our registration method on specimens resected from patients undergoing anterior temporal lobectomy (N=7) and found our method to have a mean target registration error of 0.76±0.66 and 0.98±0.60 mm for hippocampal and neocortical specimens respectively. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual correlation with pre-operative MRI image analysis techniques

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy

    Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy.

    Get PDF
    OBJECTIVE: To investigate the histopathological correlates of quantitative relaxometry and diffusion tensor imaging (DTI) and to determine their efficacy in epileptogenic lesion detection for preoperative evaluation of focal epilepsy. METHODS: We correlated quantitative relaxometry and DTI with histological features of neuronal density and morphology in 55 regions of the temporal lobe neocortex, selected from 13 patients who underwent epilepsy surgery. We made use of a validated nonrigid image registration protocol to obtain accurate correspondences between in vivo magnetic resonance imaging and histology images. RESULTS: We found T1 to be a predictor of neuronal density in the neocortical gray matter (GM) using linear mixed effects models with random effects for subjects. Fractional anisotropy (FA) was a predictor of neuronal density of large-caliber neurons only (pyramidal cells, layers 3 and 5). Comparing multivariate to univariate mixed effects models with nested variables demonstrated that employing T1 and FA together provided a significantly better fit than T1 or FA alone in predicting density of large-caliber neurons. Correlations with clinical variables revealed significant positive correlations between neuronal density and age (rs  = 0.726, pfwe  = 0.021). This study is the first to relate in vivo T1 and FA values to the proportion of neurons in GM. INTERPRETATION: Our results suggest that quantitative T1 mapping and DTI may have a role in preoperative evaluation of focal epilepsy and can be extended to identify GM pathology in a variety of neurological disorders

    Registration of in-vivo to ex-vivo MRI of surgically resected specimens: A pipeline for histology to in-vivo registration.

    Get PDF
    BACKGROUND: Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to develop and evaluate a protocol for deformable image registration of in-vivo to ex-vivo resected brain specimen MRI. This protocol, in conjunction with our previous work on ex-vivo to histology registration, completes a registration pipeline for histology to in-vivo MRI, enabling voxel-based validation of novel and existing MRI techniques with histopathology. NEW METHOD: A combination of image-based and landmark-based 3D registration was used to register in-vivo MRI and the ex-vivo MRI from patients (N=10) undergoing epilepsy surgery. Target registration error (TRE) was used to assess accuracy and the added benefit of deformable registration. RESULTS: A mean TRE of 1.35±0.11 and 1.41±0.33mm was found for neocortical and hippocampal specimens respectively. Statistical analysis confirmed that the deformable registration significantly improved the registration accuracy for both specimens. COMPARISON WITH EXISTING METHODS: Image registration of surgically resected brain specimens is a unique application which presents numerous technical challenges and that have not been fully addressed in previous literature. Our computed TRE are comparable to previous attempts tackling similar applications, as registering in-vivo MRI to whole brain or serial histology. CONCLUSION: The presented registration pipeline finds dense and accurate spatial correspondence between in-vivo MRI and histology and allows for the spatially local and quantitative assessment of pathological correlates in MRI

    In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy.

    Get PDF
    OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo. EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively assessed in CA1, CA2/3, and CA4/DG. PRINCIPAL OBSERVATIONS: MRI volumes across all subfields were positively correlated with neuronal density and size. Higher T2 intensity related to increased GFAP fraction in CA1, while quantitative T1 and diffusion MRI parameters showed negative correlations with neuronal density in CA4 and DG. Multiple linear regression analysis revealed that in vivo multiparametric MRI can predict neuronal loss in all the analyzed subfields with up to 90% accuracy. CONCLUSION: Our results, based on an accurate co-registration pipeline and a subfield-specific analysis of MRI and histology, demonstrate the potential of MRI volumetry, diffusion, and quantitative T1 as accurate in vivo biomarkers of hippocampal pathology

    Quantitative relaxometry and diffusion MRI for lateralization in MTS and non-MTS temporal lobe epilepsy.

    Get PDF
    We developed novel methodology for investigating the use of quantitative relaxometry (T1 and T2) and diffusion tensor imaging (DTI) for lateralization in temporal lobe epilepsy. Patients with mesial temporal sclerosis confirmed by pathology (N=8) and non-MTS unilateral temporal lobe epilepsy (N=6) were compared against healthy controls (N=19) using voxel-based analysis restricted to the anterior temporal lobes, and laterality indices for each MRI metric (T1, T2, fractional anisotropy (FA), mean diffusivity, axial and radial diffusivities) were computed based on the proportion of significant voxels on each side. The diffusivity metrics were the most lateralizing MRI metrics in MTS and non-MTS subsets, with significant differences also seen with FA, T1 and T2. Patient-specific multi-modal laterality indices were also computed and were shown to clearly separate the left-onset and right-onset patients. Marked differences between left-onset and right-onset patients were also observed, with left-onset patients exhibiting stronger laterality indices. Finally, neocortical abnormalities were found to be more common in the non-MTS patients. These preliminary results on a small sample size support the further investigation of quantitative MRI and multi-modal image analysis in clinical determination of seizure onset. The presence of more neocortical abnormalities in the non-MTS group suggests a role in seizure onset or propagation and motivates the investigation of more sensitive histopathological analysis to detect and delineate potentially subtle neocortical pathology

    Histological Quantification in Temporal Lobe Epilepsy

    Get PDF
    Approximately 30 percent of epilepsy patients suffer from refractory temporal lobe epilepsy which is commonly treated with resection of the epileptogenic tissue. However, surgical treatment presents many challenges in locating the epileptogenic focus and thus not all patients become seizure-free following surgery. Advances in techniques can lead to improved localization of the epileptogenic zone and may be validated by correlating MRI with neuropathology of the excised cortical tissue. Focal cortical dysplasias are a neuropathological group of cortical malformations that are often found in cases of refractory epilepsy, however, they are subtle and difficult to quantify. The purpose of this research is to employ histology image analysis techniques to better characterize these abnormalities at the neuronal and laminar level, allowing for correlative MRI-histology studies and improved lesion detection in medically intractable TLE

    Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping

    Get PDF
    The hippocampus, like the neocortex, has a morphological structure that is complex and variable in its folding pattern, especially in the hippocampal head. The current study presents a computational method to unfold hippocampal grey matter, with a particular focus on the hippocampal head where complexity is highest due to medial curving of the structure and the variable presence of digitations. This unfolding was performed on segmentations from high-resolution, T2-weighted 7T MRI data from 12 healthy participants and one surgical patient with epilepsy whose resected hippocampal tissue was used for histological validation. We traced a critical image feature composed of the hippocampal sulcus and stratum radiatum lacunosum-moleculare, (SRLM) in these images, then employed user-guided semi-automated techniques to detect and subsequently unfold the surrounding hippocampal grey matter. This unfolding was performed by solving Laplace\u27s equation in three dimensions of interest (long-axis, proximal-distal, and laminar). The resulting ‘unfolded coordinate space’ provides an intuitive way of mapping the hippocampal subfields in 2D space (long-axis and proximal-distal), such that similar borders can be applied in the head, body, and tail of the hippocampus independently of variability in folding. This unfolded coordinate space was employed to map intracortical myelin and thickness in relation to subfield borders, which revealed intracortical myelin differences that closely follow the subfield borders used here. Examination of a histological resected tissue sample from a patient with epilepsy reveals that our unfolded coordinate system has biological validity, and that subfield segmentations applied in this space are able to capture features not seen in manual tracing protocols
    corecore