133 research outputs found

    Groupwise registration with global-local graph shrinkage in atlas construction

    Get PDF
    Graph-based groupwise registration methods are widely used in atlas construction. Given a group of images, a graph is built whose nodes represent the images, and whose edges represent a geodesic path between two nodes. The distribution of images on an image manifold is explored through edge traversal in a graph. The final atlas is a mean image at the population center of the distribution on the manifold. The procedure of warping all images to the mean image turns to dynamic graph shrinkage in which nodes become closer to each other. Most conventional groupwise registration frameworks construct and shrink a graph without considering the local distribution of images on the dataset manifold and the local structure variations between image pairs. Neglecting the local information fundamentally decrease the accuracy and efficiency when population atlases are built for organs with large inter-subject anatomical variabilities. To overcome the problem, this paper proposes a global-local graph shrinkage approach that can generate accurate atlas. A connected graph is constructed automatically based on global similarities across the images to explore the global distribution. A local image distribution obtained by image clustering is used to simplify the edges of the constructed graph. Subsequently, local image similarities refine the deformation estimated through global image similarity for each image warping along the graph edges. Through the image warping, the overall simplified graph shrinks gradually to yield the atlas with respecting both global and local features. The proposed method is evaluated on 61 synthetic and 20 clinical liver datasets, and the results are compared with those of six state-of-the-art groupwise registration methods. The experimental results show that the proposed method outperforms non-global-local method approaches in terms of accuracy

    Image Processing Applications in Real Life: 2D Fragmented Image and Document Reassembly and Frequency Division Multiplexed Imaging

    Get PDF
    In this era of modern technology, image processing is one the most studied disciplines of signal processing and its applications can be found in every aspect of our daily life. In this work three main applications for image processing has been studied. In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of computational photography, has been introduced. Using FDMI, multiple images are captured simultaneously in a single shot and can later be extracted from the multiplexed image. This is achieved by spatially modulating the images so that they are placed at different locations in the Fourier domain. Finally, a Texas Instruments digital micromirror device (DMD) based implementation of FDMI is presented and results are shown. Chapter 2 discusses the problem of image reassembly which is to restore an image back to its original form from its pieces after it has been fragmented due to different destructive reasons. We propose an efficient algorithm for 2D image fragment reassembly problem based on solving a variation of Longest Common Subsequence (LCS) problem. Our processing pipeline has three steps. First, the boundary of each fragment is extracted automatically; second, a novel boundary matching is performed by solving LCS to identify the best possible adjacency relationship among image fragment pairs; finally, a multi-piece global alignment is used to filter out incorrect pairwise matches and compose the final image. We perform experiments on complicated image fragment datasets and compare our results with existing methods to show the improved efficiency and robustness of our method. The problem of reassembling a hand-torn or machine-shredded document back to its original form is another useful version of the image reassembly problem. Reassembling a shredded document is different from reassembling an ordinary image because the geometric shape of fragments do not carry a lot of valuable information if the document has been machine-shredded rather than hand-torn. On the other hand, matching words and context can be used as an additional tool to help improve the task of reassembly. In the final chapter, document reassembly problem has been addressed through solving a graph optimization problem

    A Multi-Path Approach to Histology Volume Reconstruction

    Get PDF
    This paper presents a method for correcting erratic pairwise registrations when reconstructing a volume from 2D histology slices. Due to complex and unpredictable alterations of the content of histology images, a pairwise rigid registration between two adjacent slices may fail systematically. Conversely, a neighbouring registration, which potentially involves one of these two slices, will work. This grounds our approach: using correct spatial correspondences established through neighbouring registrations to account for direct failures. We propose to search the best alignment of every couple of adjacent slices from a finite set of transformations that involve neighbouring slices in a transitive fashion. Using the proposed method, we obtained reconstructed volumes with increased coherence compared to the classical pairwise approach, both in synthetic and real data

    Effective 3D Geometric Matching for Data Restoration and Its Forensic Application

    Get PDF
    3D geometric matching is the technique to detect the similar patterns among multiple objects. It is an important and fundamental problem and can facilitate many tasks in computer graphics and vision, including shape comparison and retrieval, data fusion, scene understanding and object recognition, and data restoration. For example, 3D scans of an object from different angles are matched and stitched together to form the complete geometry. In medical image analysis, the motion of deforming organs is modeled and predicted by matching a series of CT images. This problem is challenging and remains unsolved, especially when the similar patterns are 1) small and lack geometric saliency; 2) incomplete due to the occlusion of the scanning and damage of the data. We study the reliable matching algorithm that can tackle the above difficulties and its application in data restoration. Data restoration is the problem to restore the fragmented or damaged model to its original complete state. It is a new area and has direct applications in many scientific fields such as Forensics and Archeology. In this dissertation, we study novel effective geometric matching algorithms, including curve matching, surface matching, pairwise matching, multi-piece matching and template matching. We demonstrate its applications in an integrated digital pipeline of skull reassembly, skull completion, and facial reconstruction, which is developed to facilitate the state-of-the-art forensic skull/facial reconstruction processing pipeline in law enforcement

    Analysis of airways in computed tomography

    Get PDF

    Cardiac MRI Segmentation Using Mutual Context Information from Left and Right Ventricle

    Get PDF
    In this paper, we propose a graphcut method to segment the cardiac right ventricle (RV) and left ventricle (LV) by using context information from each other. Contextual information is very helpful in medical image segmentation because the relative arrangement of different organs is the same. In addition to the conventional log-likelihood penalty, we also include a "context penalty” that captures the geometric relationship between the RV and LV. Contextual information for the RV is obtained by learning its geometrical relationship with respect to the LV. Similarly, RV provides geometrical context information for LV segmentation. The smoothness cost is formulated as a function of the learned context which helps in accurate labeling of pixels. Experimental results on real patient datasets from the STACOM database show the efficacy of our method in accurately segmenting the LV and RV. We also conduct experiments on simulated datasets to investigate our method's robustness to noise and inaccurate segmentation

    Registration of brain MR images in large-scale populations

    Get PDF
    Non-rigid image registration is fundamentally important in analyzing large-scale population of medical images, e.g., T1-weighted brain MRI data. Conventional pairwise registration methods involve only two images, as the moving subject image is deformed towards the space of the template for the maximization of their in-between similarity. The population information, however, is mostly ignored, with individual images in the population registered independently with the arbitrarily selected template. By contrast, this dissertation investigates the contributions of the entire population to image registration. First, the population can provide guidance to the pairwise registration between a certain subject and the template. If the subject and an intermediate image in the same population are similar in appearances, the subject shares a similar deformation field with the intermediate image. Thus, the guidance from the intermediate image can be beneficial to the subject, in that the pre-estimated deformation field of the intermediate image initiates the estimation of the subject deformation field when the two images are registered with the identical template. Second, all images in the population can be registered towards the common space of the population using the groupwise technique. Groupwise registration differs from the traditional design of pairwise registration in that no template is pre-determined. Instead, all images agglomerate to the common space of the population simultaneously. Moreover, the common space is revealed spontaneously during image registration, without introducing any bias towards the subsequent analyses and applications. This dissertation shows that population information can contribute to both pairwise registration and groupwise registration. In particular, by utilizing the guidance from the intermediate images in the population, the pairwise registration is more robust and accurate compared to the direct pairwise registration between the subject and the template. Also, for groupwise registration, all images in the population can be aligned more accurately in the common space, although the complexity of groupwise registration increases substantially.Doctor of Philosoph

    Analysis of Sub-Cortical Morphology in Benign Epilepsy with Centrotemporal Spikes

    Get PDF
    RÉSUMÉ Au Canada, l’épilepsie affecte environ 5 à 8 enfants par 3222 âgés de 2 à 37 ans dans la population globale. Quinze à 47 % de ces enfants ont une épilepsie bénigne avec des pointes centrotemporelles (BECTS), ce qui fait de BECTS le syndrome épileptique focal de l’enfant bénin le plus fréquent. Initialement, BECTS était considéré comme bénin parmi les autres épilepsies car il était généralement rapporté que les capacités cognitives ont été préservées ou ramenées à la normale pendant la rémission. Cependant, certaines études ont trouvé des déficits cognitifs et comportementaux, qui peuvent bien persister même après la rémission. Compte tenu des différences neurocognitives chez les enfants atteints de BECTS et de témoins normaux, la question est de savoir si des variations morphométriques subtiles dans les structures cérébrales sont également présentes chez ces patients et si elles expliquent des variations dans les performence cognitifs. En fait, malgré les preuves accumulées d’une étiologie neurodéveloppementale dans le BECTS, peu est connu sur les altérations structurelles sous-jacentes. À cet égard, la proposition de méthodes avancées en neuroimagerie permettrait d’évaluer quantitativement les variations de la morphologie cérébrale associées à ce trouble neurologique. En outre, l’étude du développement morphologique du cerveau et sa relation avec la cognition peut aider à élucider la base neuroanatomique des déficits cognitifs. Le but de cette thèse est donc de fournir un ensemble d’outils pour analyser les variations morphologiques sous-corticales subtiles provoquées par différentes maladies, telles que l’épilepsie bénigne avec des pointes centrotemporelles. La méthodologie adoptée dans cette thèse a conduit à trois objectifs de recherche spécifiques. La première étape vise à développer un nouveau cadre automatisé pour segmenter les structures sous-corticales sur les images à resonance magnètique (IRM). La deuxième étape vise à concevoir une nouvelle approche basée sur la correspondance spectrale pour capturer précisément la variabilité de forme chez les sujets épileptiques. La troisième étape conduit à une analyse de la relation entre les changements morphologiques du cerveau et les indices cognitifs. La première contribution vise plus spécifiquement la segmentation automatique des structures sous-corticales dans un processus de co-recalage et de co-segmentation multi-atlas. Contrairement aux approches standards de segmentation multi-atlas, la méthode proposée obtient la segmentation finale en utilisant un recalage en fonction de la population, tandis que les connaissances à prior basés sur les réseaux neuronaux par convolution (CNNs) sont incorporées dans la formulation d’énergie en tant que représentation d’image discriminative. Ainsi, cette méthode exploite des représentations apprises plus sophistiquées pour conduire le processus de co-recalage. De plus, étant donné un ensemble de volumes cibles, la méthode proposée calcule les probabilités de segmentation individuellement, puis segmente tous les volumes simultanément. Par conséquent, le fardeau de fournir un sous-ensemble de vérité connue approprié pour effectuer la segmentation multi-atlas est évité. Des résultats prometteurs démontrent le potentiel de notre méthode sur deux ensembles de données, contenant des annotations de structures sous-corticales. L’importance des estimations fiables des annotations est également mise en évidence, ce qui motive l’utilisation de réseaux neuronaux profonds pour remplacer les annotations de vérité connue en co-recalage avec une perte de performance minimale. La deuxième contribution vise à saisir la variabilité de forme entre deux populations de surfaces en utilisant une analyse morphologique multijoints. La méthode proposée exploite la représentation spectrale pour établir des correspondances de surface, puisque l’appariement est plus simple dans le domaine spectral plutôt que dans l’espace euclidien conventionnel. Le cadre proposé intègre la concordance spectrale à courbure moyenne dans un plateforme d’analyse de formes sous-corticales multijoints. L’analyse expérimentale sur des données cliniques a montré que les différences de groupe extraites étaient similaires avec les résultats dans d’autres études cliniques, tandis que les sorties d’analyse de forme ont été créées d’une manière à réduire le temps de calcul. Enfin, la troisième contribution établit l’association entre les altérations morphologiques souscorticales chez les enfants atteints d’épilepsie bénigne et les indices cognitifs. Cette étude permet de détecter les changements du putamen et du noyau caudé chez les enfants atteints de BECTS gauche, droit ou bilatéral. De plus, l ’association des différences volumétriques structurelles et des différences de forme avec la cognition a été étudiée. Les résultats confirment les altérations de la forme du putamen et du noyau caudé chez les enfants atteints de BECTS. De plus, nos résultats suggèrent que la variation de la forme sous-corticale affecte les fonctions cognitives. Cette étude démontre que les altérations de la forme et leur relation avec la cognition dépendent du côté de la focalisation de l’épilepsie. Ce projet nous a permis d’étudier si de nouvelles méthodes permettraient de traiter automatiquement les informations de neuro-imagerie chez les enfants atteints de BECTS et de détecter des variations morphologiques subtiles dans leurs structures sous-corticales. De plus, les résultats obtenus dans le cadre de cette thèse nous ont permis de conclure qu’il existe une association entre les variations morphologiques et la cognition par rapport au côté de la focalisation de la crise épileptique.----------ABSTRACT In Canada, epilepsy affects approximately 5 to 8 children per 3222 aged from 2 to 37 years in the overall population. Fifteen to 47% of these children have benign epilepsy with centrotemporal spikes (BECTS), making BECTS the most common benign childhood focal epileptic syndrome. Initially, BECTS was considered as benign among other epilepsies since it was generally reported that cognitive abilities were preserved or brought back to normal during remission. However, some studies have found cognitive and behavioral deficits, which may well persist even after remission. Given neurocognitive differences among children with BECTS and normal controls, the question is whether subtle morphometric variations in brain structures are also present in these patients, and whether they explain variations in cognitive indices. In fact, despite the accumulating evidence of a neurodevelopmental etiology in BECTS, little is known about underlying structural alterations. In this respect, proposing advanced neuroimaging methods will allow for quantitative assessment of variations in brain morphology associated with this neurological disorder. In addition, studying the brain morphological development and its relationship with cognition may help elucidate the neuroanatomical basis of cognitive deficits. Therefore, the focus of this thesis is to provide a set of tools for analyzing the subtle sub-cortical morphological alterations in different diseases, such as benign epilepsy with centrotemporal spikes. The methodology adopted in this thesis led to addressing three specific research objectives. The first step develops a new automated framework for segmenting subcortical structures on MR images. The second step designs a new approach based on spectral correspondence to precisely capture shape variability in epileptic individuals. The third step finds the association between brain morphological changes and cognitive indices. The first contribution aims more specifically at automatic segmentation of sub-cortical structures in a groupwise multi-atlas coregistration and cosegmentation process. Contrary to the standard multi-atlas segmentation approaches, the proposed method obtains the final segmentation using a population-wise registration, while Convolutional Neural Network (CNN)- based priors are incorporated in the energy formulation as a discriminative image representation. Thus, this method exploits more sophisticated learned representations to drive the coregistration process. Furthermore, given a set of target volumes the developed method computes the segmentation probabilities individually, and then segments all the volumes simultaneously. Therefore, the burden of providing an appropriate ground truth subset to perform multi-atlas segmentation is removed. Promising results demonstrate the potential of our method on two different datasets, containing annotations of sub-cortical structures. The importance of reliable label estimations is also highlighted, motivating the use of deep neural nets to replace ground truth annotations in coregistration with minimal loss in performance. The second contribution intends to capture shape variability between two population of surfaces using groupwise morphological analysis. The proposed method exploits spectral representation for establishing surface correspondences, since matching is simpler in the spectral domain rather than in the conventional Euclidean space. The designed framework integrates mean curvature-based spectral matching in to a groupwise subcortical shape analysis pipeline. Experimental analysis on real clinical dataset showed that the extracted group differences were in parallel with the findings in other clinical studies, while the shape analysis outputs were created in a computational efficient manner. Finally, the third contribution establishes the association between sub-cortical morphological alterations in children with benign epilepsy and cognitive indices. This study detects putamen and caudate changes in children with left, right, or bilateral BECTS to age and gender matched healthy individuals. In addition, the association of structural volumetric and shape differences with cognition is investigated. The findings confirm putamen and caudate shape alterations in children with BECTS. Also, our results suggest that variation in sub-cortical shape affects cognitive functions. More importantly, this study demonstrates that shape alterations and their relation with cognition depend on the side of epilepsy focus. This project enabled us to investigate whether new methods would allow to automatically process neuroimaging information from children afflicted with BECTS and detect subtle morphological variations in their sub-cortical structures. In addition, the results obtained in this thesis allowed us to conclude the existence of the association between morphological variations and cognition with respect to the side of seizure focus
    • …
    corecore