12,548 research outputs found

    A review of neural networks in plant disease detection using hyperspectral data

    Get PDF
    © 2018 China Agricultural University This paper reviews advanced Neural Network (NN) techniques available to process hyperspectral data, with a special emphasis on plant disease detection. Firstly, we provide a review on NN mechanism, types, models, and classifiers that use different algorithms to process hyperspectral data. Then we highlight the current state of imaging and non-imaging hyperspectral data for early disease detection. The hybridization of NN-hyperspectral approach has emerged as a powerful tool for disease detection and diagnosis. Spectral Disease Index (SDI) is the ratio of different spectral bands of pure disease spectra. Subsequently, we introduce NN techniques for rapid development of SDI. We also highlight current challenges and future trends of hyperspectral data

    REVIEW ON DETECTION OF RICE PLANT LEAVES DISEASES USING DATA AUGMENTATION AND TRANSFER LEARNING TECHNIQUES

    Get PDF
    The most important cereal crop in the world is rice (Oryza sativa). Over half of the world's population uses it as a staple food and energy source. Abiotic and biotic factors such as precipitation, soil fertility, temperature, pests, bacteria, and viruses, among others, impact the yield production and quality of rice grain. Farmers spend a lot of time and money managing diseases, and they do so using a bankrupt "eye" method that leads to unsanitary farming practices. The development of agricultural technology is greatly conducive to the automatic detection of pathogenic organisms in the leaves of rice plants. Several deep learning algorithms are discussed, and processors for computer vision problems such as image classification, object segmentation, and image analysis are discussed. The paper showed many methods for detecting, characterizing, estimating, and using diseases in a range of crops. The methods of increasing the number of images in the data set were shown. Two methods were presented, the first is traditional reinforcement methods, and the second is generative adversarial networks. And many of the advantages have been demonstrated in the research paper for the work that has been done in the field of deep learning

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved

    Digital image processing techniques for detecting, quantifying and classifying plant diseases.

    Get PDF
    Abstract. This paper presents a survey on methods that use digital image processing techniques to detect, quantify and classify plant diseases from digital images in the visible spectrum. Although disease symptoms can manifest in any part of the plant, only methods that explore visible symptoms in leaves and stems were considered. This was done for two main reasons: to limit the length of the paper and because methods dealing with roots, seeds and fruits have some peculiarities that would warrant a specific survey. The selected proposals are divided into three classes according to their objective: detection, severity quantification, and classification. Each of those classes, in turn, are subdivided according to the main technical solution used in the algorithm. This paper is expected to be useful to researchers working both on vegetable pathology and pattern recognition, providing a comprehensive and accessible overview of this important field of research

    A Survey Disease Detection Mechanism for Cotton Leaf: Training & Precaution Based Approach

    Get PDF
    The large number of people depends on cotton crop. The recognition of cotton leaf disease are of the major important as they have a cogent and momentous impact on quality and production of cotton. Cotton disease identification is an art and science. The start with collecting the images.We will consider two diseases they are Foliar, and Alternaria of cotton leaves. We have extracted the features and compare those features with the features that are extracted from the input test image they can like grayscaling, thresholding, cropping for detecting the boundary of image. Colour feature like HSV features are extracted from the output of segmentation and (ANN) Artificial neural network is trained by choosing the feature value that could distinguish the healthy and disease sample. Experimental result showed that classification performance by ANN taking feature set is better with an accuracy of 80%. The present work proposes a methodology for detecting cotton leaf disease early, using image processing techniques and artificial neural network (ANN). We are also work with the current and future precaution for the cotton tree to protects it from future disease & maintain it to improve its good production as well as life

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Symptoms Based Image Predictive Analysis for Citrus Orchards Using Machine Learning Techniques: A Review

    Get PDF
    In Agriculture, orchards are the deciding factor in the country’s economy. There are many orchards, and citrus and sugarcane will cover 60 percent of them. These citrus orchards satisfy the necessity of citrus fruits and citrus products, and these citrus fruits contain more vitamin C. The citrus orchards have had some problems generating good yields and quality products. Pathogenic diseases, pests, and water shortages are the three main problems that plants face. Farmers can find these problems early on with the support of machine learning and deep learning, which may also change how they feel about technology.  By doing this in agriculture, the farmers can cut off the major issues of yield and quality losses. This review gives enormous methods for identifying and classifying plant pathogens, pests, and water stresses using image-based work. In this review, the researchers present detailed information about citrus pathogens, pests, and water deficits. Methods and techniques that are currently available will be used to validate the problem. These will include pre-processing for intensification, segmentation, feature extraction, and selection processes, machine learning-based classifiers, and deep learning models. In this work, researchers thoroughly examine and outline the various research opportunities in the field. This review provides a comprehensive analysis of citrus plants and orchards; Researchers used a systematic review to ensure comprehensive coverage of this topic

    A PCA-SMO Based Hybrid Classification Model for Predictions in Precision Agriculture

    Get PDF
    The human population is growing at an extremely rapid rate, the demand of food supplies for the survival and sustainability of life is a gleaming challenge. Each living being in the planet gets bestowed with the healthy food to remain active and healthy. Agriculture is a domain which is extremely important as it provides the fundamental resources for survival in terms of supplying food and thus the economy of the entire world is highly dependent on agricultural production. The agricultural production is often affected by various environmental and geographical factors which are difficult to avoid being part of nature. Thus, it requires proactive mitigation plans to reduce any detrimental effect caused by the imbalance of these factors. Precision agriculture is an approach that incorporates information technology in agriculture management, the needs of crops and farming fields are fulfilled to optimized crop health and resultant crop production. The proposed study involves an ambient intelligence-based implementation using machine learning to classify diseases in tomato plants based on the images of its leaf dataset. To analytically evaluate the performance of the framework, a publicly available plant-village dataset is used which is transformed to appropriate form using one-hot encoding technique to meet the needs of the machine learning algorithm. The transformed data is dimensionally reduced by Principal Component Analysis (PCA) technique and further the optimal parameters are selected using Spider Monkey Optimization (SMO) approach. The most relevant features as selected using the Hybrid PCA-SMO technique fed into a Deep Neural Networks (DNN) model to classify the tomato diseases. The optimal performance of the DNN model after implementing dimensionality reduction by Hybrid PCA-SMO technique reached at 99% accuracy was achieved in training and 94% accuracy was achieved after testing the model for 20 epochs. The proposed model is evaluated based on accuracy and loss rate metrics; it justifies the superiority of the approach

    A Survey on Sugarcane Leaf Disease Identification Using Deep Learning Technique(CNN)

    Get PDF
    The management of plant diseases is vital for the economical production of food and poses important challenges to the employment of soil, water, fuel and alternative inputs for agricultural functions. In each natural and cultivated populations, plants have inherent sickness tolerance, however there also are reports of devastating impacts of plant diseases. The management of diseases, however, within reason effective for many crops. sickness management is allotted through the employment of plants that square measure bred permanently resistance to several diseases and thru approaches to plant cultivation, like crop rotation, the employment of pathogen-free seeds, the given planting date and plant density, field wetness management, and therefore the use of pesticides. so as to enhance sickness management and to stay up with changes within the impact of diseases iatrogenic by the continued evolution and movement of plant pathogens and by changes in agricultural practices, continued progress within the science of soil science is required. Plant diseases cause tremendous economic losses for farmers globally. it's calculable that in additional developed settings across massive regions and lots of crop species, diseases usually cut back plant yields by ten percent per annum, however yield loss for diseases usually exceeds twenty percent in less developed settings. Around twenty-five percent of crop losses square measure caused by pests and diseases, the Food and Agriculture Organization estimates. to unravel this, new strategies for early detection of diseases and pests square measure required, like novel sensors that sight plant odours and spectrographic analysis and bio photonics that may diagnose plant health and metabolism. In artificial neural networks, deep learning is an element of a broader family of machine learning approaches supported realistic learning. Learning is often controlled, semi-supervised or unmonitored. to handle several real-world queries, Deep Learning Approaches are normally used. so as to differentiate pictures and acknowledge their options, coevolutionary neural networks have had a larger result. This article will do a Leaf Disease Identification Survey with Deep Learning Methods. It takes Sugarcane leaf as an instance to our paper
    corecore