104,816 research outputs found

    End-to-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result

    Full text link
    The general aim of multi-focus image fusion is to gather focused regions of different images to generate a unique all-in-focus fused image. Deep learning based methods become the mainstream of image fusion by virtue of its powerful feature representation ability. However, most of the existing deep learning structures failed to balance fusion quality and end-to-end implementation convenience. End-to-end decoder design often leads to unrealistic result because of its non-linear mapping mechanism. On the other hand, generating an intermediate decision map achieves better quality for the fused image, but relies on the rectification with empirical post-processing parameter choices. In this work, to handle the requirements of both output image quality and comprehensive simplicity of structure implementation, we propose a cascade network to simultaneously generate decision map and fused result with an end-to-end training procedure. It avoids the dependence on empirical post-processing methods in the inference stage. To improve the fusion quality, we introduce a gradient aware loss function to preserve gradient information in output fused image. In addition, we design a decision calibration strategy to decrease the time consumption in the application of multiple images fusion. Extensive experiments are conducted to compare with 19 different state-of-the-art multi-focus image fusion structures with 6 assessment metrics. The results prove that our designed structure can generally ameliorate the output fused image quality, while implementation efficiency increases over 30\% for multiple images fusion.Comment: repor

    Multi-Sensor Image Fusion Based on Moment Calculation

    Full text link
    An image fusion method based on salient features is proposed in this paper. In this work, we have concentrated on salient features of the image for fusion in order to preserve all relevant information contained in the input images and tried to enhance the contrast in fused image and also suppressed noise to a maximum extent. In our system, first we have applied a mask on two input images in order to conserve the high frequency information along with some low frequency information and stifle noise to a maximum extent. Thereafter, for identification of salience features from sources images, a local moment is computed in the neighborhood of a coefficient. Finally, a decision map is generated based on local moment in order to get the fused image. To verify our proposed algorithm, we have tested it on 120 sensor image pairs collected from Manchester University UK database. The experimental results show that the proposed method can provide superior fused image in terms of several quantitative fusion evaluation index.Comment: 5 pages, International Conferenc

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database
    • …
    corecore