554 research outputs found

    Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness

    Get PDF
    In this modern era, land transports are increasing dramatically. Moreover, self-driven car or the Advanced Driving Assistance System (ADAS) is now the public demand. For these types of cars, road conditions detection is mandatory. On the other hand, compared to the number of vehicles, to increase the number of roads is not possible. Software is the only alternative solution. Road Conditions Detection system will help to solve the issues. For solving this problem, Image processing, and machine learning have been applied to develop a project namely, Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness. Many issues could be considered for road conditions but the main focus will be on the detection of potholes, Maintenance sings and lane. Image processing and machine learning have been combined for our system for detecting in real-time. Machine learning has been applied to maintains signs detection. Image processing has been applied for detecting lanes and potholes. The detection system will provide a lane mark with colored lines, the pothole will be a marker with a red rectangular box and for a road Maintenance sign, the system will also provide information of aintenance sign as maintenance sing is detected. By observing all these scenarios, the driver will realize the road condition. On the other hand situation awareness is the ability to perceive information from it’s surrounding, takes decisions based on perceived information and it makes decision based on prediction

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    Pothole Detection under Diverse Conditions using Object Detection Models

    Get PDF
    One of the most important tasks in road maintenance is the detection of potholes. This process is usually done through manual visual inspection, where certified engineers assess recorded images of pavements acquired using cameras or professional road assessment vehicles. Machine learning techniques are now being applied to this problem, with models trained to automatically identify road conditions. However, approaching this real-world problem with machine learning techniques presents the classic problem of how to produce generalisable models. Images and videos may be captured in different illumination conditions, with different camera types, camera angles, and resolutions. In this paper, we present our approach to building a generalized learning model for pothole detection. We apply four datasets that contain a range of image and environment conditions. Using the Faster RCNN object detection model, we demonstrate the extent to which pothole detection models can generalise across various conditions. Our work is a contribution to bringing automated road maintenance techniques from the research lab into the real-worl

    Building a pothole detection and tracking system

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Computer Engineering, April 2019Building and maintaining infrastructure is often a key challenge in developing countries, and Ghana is no exception. Increasing population and car ownership rates coupled with poor maintenance cultures result in a corresponding increase in the rate of damage of roads, causing deformities such as cracks and potholes. These road deformities not only negatively impact a country’s road infrastructure and the cars which ply said roads, but also pose a threat to road users. In Ghana, only two mobile maintenance units are charged with monitoring the roads in all ten regions of the country. Thus, this project presents Pothole Tracker Ghana, a two-tiered application inspired by the idea of crowdsourcing. Consisting of a vision-based pothole classification system implemented on a Raspberry Pi and a map-based web application, this project aims to reduce the barriers to data collection on poor road infrastructure on the part of governments whilst allowing everyday road users to make informed decisions concerning their journeys. Three different algorithms are considered and compared for the classification task; logistic regression, support vector machines (SVM) and a hybrid algorithm incorporating a convolutional neural network (CNN) and SVM. The tuned SVM is chosen for the final system implementation. 
Ashesi Universit

    RoadScan: A Novel and Robust Transfer Learning Framework for Autonomous Pothole Detection in Roads

    Full text link
    This research paper presents a novel approach to pothole detection using Deep Learning and Image Processing techniques. The proposed system leverages the VGG16 model for feature extraction and utilizes a custom Siamese network with triplet loss, referred to as RoadScan. The system aims to address the critical issue of potholes on roads, which pose significant risks to road users. Accidents due to potholes on the roads have led to numerous accidents. Although it is necessary to completely remove potholes, it is a time-consuming process. Hence, a general road user should be able to detect potholes from a safe distance in order to avoid damage. Existing methods for pothole detection heavily rely on object detection algorithms which tend to have a high chance of failure owing to the similarity in structures and textures of a road and a pothole. Additionally, these systems utilize millions of parameters thereby making the model difficult to use in small-scale applications for the general citizen. By analyzing diverse image processing methods and various high-performing networks, the proposed model achieves remarkable performance in accurately detecting potholes. Evaluation metrics such as accuracy, EER, precision, recall, and AUROC validate the effectiveness of the system. Additionally, the proposed model demonstrates computational efficiency and cost-effectiveness by utilizing fewer parameters and data for training. The research highlights the importance of technology in the transportation sector and its potential to enhance road safety and convenience. The network proposed in this model performs with a 96.12 % accuracy, 3.89 % EER, and a 0.988 AUROC value, which is highly competitive with other state-of-the-art works.Comment: 6 pages, 5 figures, Accepted at the IEEE 7th Conference on Communication and Information Technology 202

    Pothole Reporting System

    Get PDF
    The purpose of this project is to create a pothole detection device that can be attached to the underside of a commercial vehicle. Potholes cost motorists around 6.4 billion dollars annually, thus demonstrating the need for a system to aid with the detection and reporting of potholes. The four systems we needed to consider for the implementation of this project were the power system, the sensing system, the data processing system, and the reporting and logging system. Power pulled from the vehicle will enable the sensors and data processing module. The data processing module will analyze the readings from the sensors and output pothole data to the logging and reporting system. The logging and reporting system, located on an android mobile device, will store the pothole locations on a cloud server

    Pothole Reporting System

    Get PDF
    The purpose of this project is to create a pothole detection device that can be attached to the underside of a commercial vehicle. Potholes cost motorists around 6.4 billion dollars annually, thus demonstrating the need for a system to aid with the detections and reporting of potholes. The four systems we needed to consider for the implementation of this project were the power system, the sensing system, the data processing system, and the reporting and logging system. Power pulled from the vehicle will enable the sensors and data processing module. The data processing module will analyze the readings from the sensors and output pothole data to the logging and reporting system. The logging and reporting system, located on an android mobile device, will store the pothole locations on a cloud server

    Road Condition Mapping by Integration of Laser Scanning, RGB Imaging and Spectrometry

    Get PDF
    Roads are important infrastructure and are primary means of transportation. Control and maintenance of roads are substantial as the pavement surface deforms and deteriorates due to heavy load and influences of weather. Acquiring detailed information about the pavement condition is a prerequisite for proper planning of road pavement maintenance and rehabilitation. Many companies detect and localize the road pavement distresses manually, either by on-site inspection or by digitizing laser data and imagery captured by mobile mapping. The automation of road condition mapping using laser data and colour images is a challenge. Beyond that, the mapping of material properties of the road pavement surface with spectrometers has not yet been investigated. This study aims at automatic mapping of road surface condition including distress and material properties by integrating laser scanning, RGB imaging and spectrometry. All recorded data are geo-referenced by means of GNSS/ INS. Methods are developed for pavement distress detection that cope with a variety of different weather and asphalt conditions. Further objective is to analyse and map the material properties of the pavement surface using spectrometry data. No standard test data sets are available for benchmarking developments on road condition mapping. Therefore, all data have been recorded with a mobile mapping van which is set up for the purpose of this research. The concept for detecting and localizing the four main pavement distresses, i.e. ruts, potholes, cracks and patches is the following: ruts and potholes are detected using laser scanning data, cracks and patches using RGB images. For each of these pavement distresses, two or more methods are developed, implemented, compared to each other and evaluated to identify the most successful method. With respect to the material characteristics, spectrometer data of road sections are classified to indicate pavement quality. As a spectrometer registers almost a reflectivity curve in VIS, NIR and SWIR wavelength, indication of aging can be derived. After detection and localization of the pavement distresses and pavement quality classes, the road condition map is generated by overlaying all distresses and quality classes. As a preparatory step for rut and pothole detection, the road surface is extracted from mobile laser scanning data based on a height jump criterion. For the investigation on rut detection, all scanlines are processed. With an approach based on iterative 1D polynomial fitting, ruts are successfully detected. For streets with the width of 6 m to 10 m, a 6th order polynomial is found to be most suitable. By 1D cross-correlation, the centre of the rut is localized. An alternative method using local curvature shows a high sensitivity to the shape and width of a rut and is less successful. For pothole detection, the approach based on polynomial fitting generalized to two dimensions. As an alternative, a procedure using geodesic morphological reconstruction is investigated. Bivariate polynomial fitting encounters problems with overshoot at the boundary of the regions. The detection is very successful using geodesic morphology. For the detection of pavement cracks, three methods using rotation invariant kernels are investigated. Line Filter, High-pass Filter and Modified Local Binary Pattern kernels are implemented. A conceptual aspect of the procedure is to achieve a high degree of completeness. The most successful variant is the Line Filter for which the highest degree of completeness of 81.2 % is achieved. Two texture measures, the gradient magnitude and the local standard deviation are employed to detect pavement patches. As patches may differ with respect to homogeneity and may not always have a dark border with the intact pavement surface, the method using the local standard deviation is more suitable for detecting the patches. Linear discriminant analysis is utilized for asphalt pavement quality analysis and classification. Road pavement sections of ca. 4 m length are classified into two classes, namely: “Good” and “Bad” with the overall accuracy of 77.6 %. The experimental investigations show that the developed methods for automatic distress detection are very successful. By 1D polynomial fitting on laser scanlines, ruts are detected. In addition to ruts also pavement depressions like shoving can be revealed. The extraction of potholes is less demanding. As potholes appear relatively rare in the road networks of a city, the road segments which are affected by potholes are selected interactively. While crack detection by Line Filter works very well, the patch detection is more challenging as patches sometimes look very similar to the intact surface. The spectral classification of pavement sections contributes to road condition mapping as it gives hints on aging of the road pavement.Straßen bilden die primären Transportwege für Personen und Güter und sind damit ein wichtiger Bestandteil der Infrastruktur. Der Aufwand für Instandhaltung und Wartung der Straßen ist erheblich, da sich die Fahrbahnoberfläche verformt und durch starke Belastung und Wettereinflüsse verschlechtert. Die Erfassung detaillierter Informationen über den Fahrbahnzustand ist Voraussetzung für eine sachgemäße Planung der Fahrbahnsanierung und -rehabilitation. Viele Unternehmen detektieren und lokalisieren die Fahrbahnschäden manuell entweder durch Vor-Ort-Inspektion oder durch Digitalisierung von Laserdaten und Bildern aus mobiler Datenerfassung. Eine Automatisierung der Straßenkartierung mit Laserdaten und Farbbildern steht noch in den Anfängen. Zudem werden bisher noch nicht die Alterungszustände der Asphaltdecke mit Hilfe der Spektrometrie bewertet. Diese Studie zielt auf den automatischen Prozess der Straßenzustandskartierung einschließlich der Straßenschäden und der Materialeigenschaften durch Integration von Laserscanning, RGB-Bilderfassung und Spektrometrie ab. Alle aufgezeichneten Daten werden mit GNSS / INS georeferenziert. Es werden Methoden für die Erkennung von Straßenschäden entwickelt, die sich an unterschiedliche Datenquellen bei unterschiedlichem Wetter- und Asphaltzustand anpassen können. Ein weiteres Ziel ist es, die Materialeigenschaften der Fahrbahnoberfläche mittels Spektrometrie-Daten zu analysieren und abzubilden. Derzeit gibt es keine standardisierten Testdatensätze für die Evaluierung von Verfahren zur Straßenzustandsbeschreibung. Deswegen wurden alle Daten, die in dieser Studie Verwendung finden, mit einem eigens für diesen Forschungszweck konfigurierten Messfahrzeug aufgezeichnet. Das Konzept für die Detektion und Lokalisierung der wichtigsten vier Arten von Straßenschäden, nämlich Spurrillen, Schlaglöcher, Risse und Flickstellen ist das folgende: Spurrillen und Schlaglöcher werden aus Laserdaten extrahiert, Risse und Flickstellen aus RGB- Bildern. Für jede dieser Straßenschäden werden mindestens zwei Methoden entwickelt, implementiert, miteinander verglichen und evaluiert um festzustellen, welche Methode die erfolgreichste ist. Im Hinblick auf die Materialeigenschaften werden Spektrometriedaten der Straßenabschnitte klassifiziert, um die Qualität des Straßenbelages zu bewerten. Da ein Spektrometer nahezu eine kontinuierliche Reflektivitätskurve im VIS-, NIR- und SWIR-Wellenlängenbereich aufzeichnet, können Merkmale der Asphaltalterung abgeleitet werden. Nach der Detektion und Lokalisierung der Straßenschäden und der Qualitätsklasse des Straßenbelages wird der übergreifende Straßenzustand mit Hilfe von Durchschlagsregeln als Kombination aller Zustandswerte und Qualitätsklassen ermittelt. In einem vorbereitenden Schritt für die Spurrillen- und Schlaglocherkennung wird die Straßenoberfläche aus mobilen Laserscanning-Daten basierend auf einem Höhensprung-Kriterium extrahiert. Für die Untersuchung zur Spurrillen-Erkennung werden alle Scanlinien verarbeitet. Mit einem Ansatz, der auf iterativer 1D-Polynomanpassung basiert, werden Spurrillen erfolgreich erkannt. Für eine Straßenbreite von 8-10m erweist sich ein Polynom sechsten Grades als am besten geeignet. Durch 1D-Kreuzkorrelation wird die Mitte der Spurrille erkannt. Eine alternative Methode, die die lokale Krümmung des Querprofils benutzt, erweist sich als empfindlich gegenüber Form und Breite einer Spurrille und ist weniger erfolgreich. Zur Schlaglocherkennung wird der Ansatz, der auf Polynomanpassung basiert, auf zwei Dimensionen verallgemeinert. Als Alternative wird eine Methode untersucht, die auf der Geodätischen Morphologischen Rekonstruktion beruht. Bivariate Polynomanpassung führt zu Überschwingen an den Rändern der Regionen. Die Detektion mit Hilfe der Geodätischen Morphologischen Rekonstruktion ist dagegen sehr erfolgreich. Zur Risserkennung werden drei Methoden untersucht, die rotationsinvariante Kerne verwenden. Linienfilter, Hochpassfilter und Lokale Binäre Muster werden implementiert. Ein Ziel des Konzeptes zur Risserkennung ist es, eine hohe Vollständigkeit zu erreichen. Die erfolgreichste Variante ist das Linienfilter, für das mit 81,2 % der höchste Grad an Vollständigkeit erzielt werden konnte. Zwei Texturmaße, nämlich der Betrag des Grauwert-Gradienten und die lokale Standardabweichung werden verwendet, um Flickstellen zu entdecken. Da Flickstellen hinsichtlich der Homogenität variieren können und nicht immer eine dunkle Grenze mit dem intakten Straßenbelag aufweisen, ist diejenige Methode, welche die lokale Standardabweichung benutzt, besser zur Erkennung von Flickstellen geeignet. Lineare Diskriminanzanalyse wird zur Analyse der Asphaltqualität und zur Klassifikation benutzt. Straßenabschnitte von ca. 4m Länge werden zwei Klassen („Gut“ und „Schlecht“) mit einer gesamten Accuracy von 77,6 % zugeordnet. Die experimentellen Untersuchungen zeigen, dass die entwickelten Methoden für die automatische Entdeckung von Straßenschäden sehr erfolgreich sind. Durch 1D Polynomanpassung an Laser-Scanlinien werden Spurrillen entdeckt. Zusätzlich zu Spurrillen werden auch Unebenheiten des Straßenbelages wie Aufschiebungen detektiert. Die Extraktion von Schlaglöchern ist weniger anspruchsvoll. Da Schlaglöcher relativ selten in den Straßennetzen von Städten auftreten, werden die Straßenabschnitte mit Schlaglöchern interaktiv ausgewählt. Während die Rissdetektion mit Linienfiltern sehr gut funktioniert, ist die Erkennung von Flickstellen eine größere Herausforderung, da Flickstellen manchmal der intakten Straßenoberfläche sehr ähnlich sehen. Die spektrale Klassifizierung der Straßenabschnitte trägt zur Straßenzustandsbewertung bei, indem sie Hinweise auf den Alterungszustand des Straßenbelages liefert

    Pothole Reporting System

    Get PDF
    The purpose of this project is to create a pothole detection device that can be attached to the underside of a commercial vehicle. Potholes cost motorists around 6.4 billion dollars annually, thus demonstrating the need for a system to aid with the detection and reporting of potholes. The four systems we needed to consider for the implementation of this project were the power system, the sensing system, the data processing system, and the reporting and logging system. Power pulled from the vehicle will enable the sensors and data processing module. The data processing module will analyze the readings from the sensors and output pothole data to the logging and reporting system. The logging and reporting system, located on an android mobile device, will store the pothole locations on a cloud server
    corecore