335 research outputs found

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Get PDF
    Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR). According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO), which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability

    Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization

    Get PDF
    In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Multi-authored monograph

    Get PDF
    Unmanned aerial vehicles. Perspectives. Management. Power supply : Multi-authored monograph / V. V. Holovenskiy, T. F. Shmelova,Y. M. Shmelev and oth.; Science Editor DSc. (Engineering), T. F. Shmelova. – Warsaw, 2019. – 100 p. - ISBN 978-83-66216-10-5.У монографії аналізуються можливі варіанти енергопостачання та управління безпілотними літальними апаратами. Також розглядається питання прийняття рішення оператором безпілотного літального апарату при управлінні у надзвичайних ситуаціях. Рекомендується для фахівців, аспірантів і студентів за спеціальностями 141 - «Електроенергетика, електротехніка та електромеханіка», 173 - «Авіоніка» та інших суміжних спеціальностей.The monograph analyzes the possible options for energy supply and control of unmanned aerial vehicles. Also, the issue of decision-making by the operator of an unmanned aerial vehicle in the management of emergencies is considered.

    Improved wind turbine monitoring using operational data

    Get PDF
    With wind energy becoming a major source of energy, there is a pressing need to reduce all associated costs to be competitive in a market that might be fully subsidy-free in the near future. Before thousands of wind turbines were installed all over the world, research in e.g. understanding aerodynamics, developing new materials, designing better gearboxes, improving power electronics etc., helped to cut down wind turbine manufacturing costs. It might be assumed, that this would be sufficient to reduce the costs of wind energy as the resource, the wind itself, is free of costs. However, it has become clear that the operation and maintenance of wind turbines contributes significantly to the overall cost of energy. Harsh environmental conditions and the frequently remote locations of the turbines makes maintenance of wind turbines challenging. Just recently, the industry realised that a move from reactive and scheduled maintenance towards preventative or condition-based maintenance will be crucial to further reduce costs. Knowing the condition of the wind turbine is key for any optimisation of operation and maintenance. There are various possibilities to install advanced sensors and monitoring systems developed in recent years. However, these will inevitably incur new costs that need to be worthwhile and retro-fits to existing turbines might not always be feasible. In contrast, this work focuses on ways to use operational data as recorded by the turbine's Supervisory Control And Data Acquisition (SCADA) system, which is installed in all modern wind turbines for operating purposes -- without additional costs. SCADA data usually contain information about the environmental conditions (e.g. wind speed, ambient temperature), the operation of the turbine (power production, rotational speed, pitch angle) and potentially the system's health status (temperatures, vibration). These measurements are commonly recorded in ten-minutely averages and might be seen as indirect and top-level information about the turbine's condition. Firstly, this thesis discusses the use of operational data to monitor the power performance to assess the overall efficiency of wind turbines and to analyse and optimise maintenance. In a sensitivity study, the financial consequences of imperfect maintenance are evaluated based on case study data and compared with environmental effects such as blade icing. It is shown how decision-making of wind farm operators could be supported with detailed `what-if' scenario analyses. Secondly, model-based monitoring of SCADA temperatures is investigated. This approach tries to identify hidden changes in the load-dependent fluctuations of drivetrain temperatures that can potentially reveal increased degradation and possible imminent failure. A detailed comparison of machine learning regression techniques and model configurations is conducted based on data from four wind farms with varying properties. The results indicate that the detailed setup of the model is very important while the selection of the modelling technique might be less relevant than expected. Ways to establish reliable failure detection are discussed and a condition index is developed based on an ensemble of different models and anomaly measures. However, the findings also highlight that better documentation of maintenance is required to further improve data-driven condition monitoring approaches. In the next part, the capabilities of operational data are explored in a study with data from both the SCADA system and a Condition Monitoring System (CMS) based on drivetrain vibrations. Analyses of signal similarity and data clusters reveal signal relationships and potential for synergistic effects of the different data sources. An application of machine learning techniques demonstrates that the alarms of the commercial CMS can be predicted in certain cases with SCADA data alone. Finally, the benefits of having wind turbines in farms are investigated in the context of condition monitoring. Several approaches are developed to improve failure detection based on operational statistics, CMS vibrations or SCADA temperatures. It is demonstrated that utilising comparisons with neighbouring turbines might be beneficial to get earlier and more reliable warnings of imminent failures. This work has been part of the Advanced Wind Energy Systems Operation and Maintenance Expertise (AWESOME) project, a European consortium with companies, universities and research centres in the wind energy sector from Spain, Italy, Germany, Denmark, Norway and UK. Parts of this work were developed in collaboration with other fellows in the project (as marked and explained in footnotes)

    Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-09-14, pub-electronic 2021-09-20Publication status: PublishedModern wind turbines operate in continuously transient conditions, with varying speed, torque, and power based on the stochastic nature of the wind resource. This variability affects not only the operational performance of the wind power system, but can also affect its integrity under service conditions. Condition monitoring continues to play an important role in achieving reliable and economic operation of wind turbines. This paper reviews the current advances in wind turbine condition monitoring, ranging from conventional condition monitoring and signal processing tools to machine-learning-based condition monitoring and usage of big data mining for predictive maintenance. A systematic review is presented of signal-based and data-driven modeling methodologies using intelligent and machine learning approaches, with the view to providing a critical evaluation of the recent developments in this area, and their applications in diagnosis, prognosis, health assessment, and predictive maintenance of wind turbines and farms

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Condition Assessment of Concrete Bridge Decks Using Ground and Airborne Infrared Thermography

    Get PDF
    Applications of nondestructive testing (NDT) technologies have shown promise in assessing the condition of existing concrete bridges. Infrared thermography (IRT) has gradually gained wider acceptance as a NDT and evaluation tool in the civil engineering field. The high capability of IRT in detecting subsurface delamination, commercial availability of infrared cameras, lower cost compared with other technologies, speed of data collection, and remote sensing are some of the expected benefits of applying this technique in bridge deck inspection practices. The research conducted in this thesis aims at developing a rational condition assessment system for concrete bridge decks based on IRT technology, and automating its analysis process in order to add this invaluable technique to the bridge inspector’s tool box. Ground penetrating radar (GPR) has also been vastly recognized as a NDT technique capable of evaluating the potential of active corrosion. Therefore, integrating IRT and GPR results in this research provides more precise assessments of bridge deck conditions. In addition, the research aims to establish a unique link between NDT technologies and inspector findings by developing a novel bridge deck condition rating index (BDCI). The proposed procedure captures the integrated results of IRT and GPR techniques, along with visual inspection judgements, thus overcoming the inherent scientific uncertainties of this process. Finally, the research aims to explore the potential application of unmanned aerial vehicle (UAV) infrared thermography for detecting hidden defects in concrete bridge decks. The NDT work in this thesis was conducted on full-scale deteriorated reinforced concrete bridge decks located in Montreal, Quebec and London, Ontario. The proposed models have been validated through various case studies. IRT, either from the ground or by utilizing a UAV with high-resolution thermal infrared imagery, was found to be an appropriate technology for inspecting and precisely detecting subsurface anomalies in concrete bridge decks. The proposed analysis produced thermal mosaic maps from the individual IR images. The k-means clustering classification technique was utilized to segment the mosaics and identify objective thresholds and, hence, to delineate different categories of delamination severity in the entire bridge decks. The proposed integration methodology of NDT technologies and visual inspection results provided more reliable BDCI. The information that was sought to identify the parameters affecting the integration process was gathered from bridge engineers with extensive experience and intuition. The analysis process utilized the fuzzy set theory to account for uncertainties and imprecision in the measurements of bridge deck defects detected by IRT and GPR testing along with bridge inspector observations. The developed system and models should stimulate wider acceptance of IRT as a rapid, systematic and cost-effective evaluation technique for detecting bridge deck delaminations. The proposed combination of IRT and GPR results should expand their correlative use in bridge deck inspection. Integrating the proposed BDCI procedure with existing bridge management systems can provide a detailed and timely picture of bridge health, thus helping transportation agencies in identifying critical deficiencies at various service life stages. Consequently, this can yield sizeable reductions in bridge inspection costs, effective allocation of limited maintenance and repair funds, and promote the safety, mobility, longevity, and reliability of our highway transportation assets
    corecore