816 research outputs found

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Textural Difference Enhancement based on Image Component Analysis

    Get PDF
    In this thesis, we propose a novel image enhancement method to magnify the textural differences in the images with respect to human visual characteristics. The method is intended to be a preprocessing step to improve the performance of the texture-based image segmentation algorithms. We propose to calculate the six Tamura's texture features (coarseness, contrast, directionality, line-likeness, regularity and roughness) in novel measurements. Each feature follows its original understanding of the certain texture characteristic, but is measured by some local low-level features, e.g., direction of the local edges, dynamic range of the local pixel intensities, kurtosis and skewness of the local image histogram. A discriminant texture feature selection method based on principal component analysis (PCA) is then proposed to find the most representative characteristics in describing textual differences in the image. We decompose the image into pairwise components representing the texture characteristics strongly and weakly, respectively. A set of wavelet-based soft thresholding methods are proposed as the dictionaries of morphological component analysis (MCA) to sparsely highlight the characteristics strongly and weakly from the image. The wavelet-based thresholding methods are proposed in pair, therefore each of the resulted pairwise components can exhibit one certain characteristic either strongly or weakly. We propose various wavelet-based manipulation methods to enhance the components separately. For each component representing a certain texture characteristic, a non-linear function is proposed to manipulate the wavelet coefficients of the component so that the component is enhanced with the corresponding characteristic accentuated independently while having little effect on other characteristics. Furthermore, the above three methods are combined into a uniform framework of image enhancement. Firstly, the texture characteristics differentiating different textures in the image are found. Secondly, the image is decomposed into components exhibiting these texture characteristics respectively. Thirdly, each component is manipulated to accentuate the corresponding texture characteristics exhibited there. After re-combining these manipulated components, the image is enhanced with the textural differences magnified with respect to the selected texture characteristics. The proposed textural differences enhancement method is used prior to both grayscale and colour image segmentation algorithms. The convincing results of improving the performance of different segmentation algorithms prove the potential of the proposed textural difference enhancement method

    Parallel processing applied to image mosaic generation

    Get PDF
    The automatic construction of large mosaics obtained from high resolution digital images is an area of great importance, with applications in different areas. In agriculture, the requirements of cartographic accuracy of mosaics of annual or perennial crops are not so high, but the speed in obtaining them is the most critical factor. The efficiency in decision making is related to the obtaining faster and more accurate information, especially in the control of pests, diseases or fire control. This project proposes a methodology based on SIFT Transform and parallel processing to build mosaics automatically, using high resolution agricultural aerial images. Build mosaics with high resolution images requires high computational effort for processing them. To treat the problem of computational effort, the standard OpenMP of parallel processing was used to accelerate the process and results are presented for a computer with 2, 4 and 8 threads

    High-throughput phenotyping technology for corn ears

    Get PDF
    The phenotype of any organism, or as in this case, plants, includes traits or characteristics that can be measured using a technical procedure. Phenotyping is an important activity in plant breeding, since it gives breeders an observable representation of the plant’s genetic code, which is called the genotype. The word phenotype originates from the Greek word “phainein” which means “to show” and the word “typos” which means “type”. Ideally, the development of phenotyping technologies should be in lockstep with genotyping technologies, but unfortunately it is not; currently there exists a major discrepancy between the technological sophistication of genotyping versus phenotyping, and the gap is getting wider. Whereas genotyping has become a high-throughput low-cost standardized procedure, phenotyping still comprises ample manual measurements which are time consuming, tedious, and error prone. The project as conducted here aims at alleviating this problem; To aid breeders, a method was devised that allows for high-throughput phenotyping of corn ears, based on an existing imaging arrangement that produces frontal views of the ears. This thesis describes the development of machine vision algorithms that measure overall ear parameters such as ear length, ear diameter, and cap percentage (the proportion of the ear that features kernels versus the barren area). The main image processing functions used here were segmentation, skewness correction, morphological operation and image registration. To obtain a kernel count, an “ear map” was constructed using both a morphological operation and a feature matching operation. The main challenge for the morphological operation was to accurately select only kernel rows that are frontally exposed in each single image. This issue is addressed in this project by developing an algorithm of shadow recognition. The main challenge for the feature-matching operation was to detect and match image feature points. This issue was addressed by applying the algorithms of Harris’s Conner detection and SIFT descriptor. Once the ear map is created, many other morphological kernel parameters (area, location, circumference, to name a few) can be determined. Remaining challenges in this research are pointed out, including sample choice, apparatus modification and algorithm improvement. Suggestions and recommendations for future work are also provided

    Performance analysis on color image mosaicing techniques on FPGA

    Get PDF
    Today, the surveillance systems and other monitoring systems are considering the capturing of image sequences in a single frame. The captured images can be combined to get the mosaiced image or combined image sequence. But the captured image may have quality issues like brightness issue, alignment issue (correlation issue), resolution issue, manual image registration issue etc. The existing technique like cross correlation can offer better image mosaicing but faces brightness issue in mosaicing. Thus, this paper introduces two different methods for mosaicing i.e., (a) Sliding Window Module (SWM) based Color Image Mosaicing (CIM) and (b) Discrete Cosine Transform (DCT) based CIM on Field Programmable Gate Array (FPGA). The SWM based CIM adopted for corner detection of two images and perform the automatic image registration while DCT based CIM aligns both the local as well as global alignment of images by using phase correlation approach. Finally, these two methods performances are analyzed by comparing with parameters like PSNR, MSE, device utilization and execution time. From the analysis it is concluded that the DCT based CIM can offers significant results than SWM based CIM

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    • 

    corecore